Ero sivun ”Maaperän pitoisuudet” versioiden välillä
pEi muokkausyhteenvetoa |
|||
Rivi 130: | Rivi 130: | ||
==A. Kaivosalueen ympäristön maaperän kuormittuminen - arviointi kaivostoiminnan suunnitteluvaiheessa== | ==A. Kaivosalueen ympäristön maaperän kuormittuminen - arviointi kaivostoiminnan suunnitteluvaiheessa== | ||
Versio 16. toukokuuta 2013 kello 09.51
Edistymisluokitus |
---|
Opasnetissa lukuisat sivut ovat työn alla eri vaiheissa. Niiden tietosisältöön pitää siis suhtautua harkiten. Tämän sivun sisällön edistyminen on arvioitu:
|
Tämä sivu on ensyklopedia-artikkeli.
Sivutunniste: Op_fi3443 |
---|
Moderaattori:Ei ole (katso kaikki) Kuinka ryhtyä moderaattoriksi? Sivun edistyminen: Täysluonnos. Arvostuksen määrää ei ole arvioitu (ks. peer review). |
Lisää dataa
|
- Tämä sivu on ohjesivu ja osa alkuperäistä Minera-loppuraporttia. Varsinainen menetelmä on kuvattu sivulla Kaivostoiminnan haitta-aineet maaperässä
Johdanto
Maaperän haitallisten ainesten pitoisuuteen vaikuttavat kohteen
- maalaji
- taustapitoisuus
- ilman, veden ja maaperän kautta tapahtunut ihmistoiminnan kuormitus (Nikkarinen et al. 2008)
Riskinarvioinnin lähtöoletuksena on, että eliöt ovat sopeutuneet maaperän luontaisiin metallipitoisuuksiin, sillä metalleja esiintyy luontaisesti kaikkialla. Tämä ei koske kuitenkaan ihmistä ja terveysriskin arviota: ihmisen ei oleteta sopeutuneen metallien taustapaitoisuuksiin ympäristössä. Ihmisten terveysriksi arvioidaan metallin kokonaispitoisuudelle.
Ominaista metallien luontaiselle esiintymiselle on epätasainen jakautuminen. Täten ihmistoiminnan aiheuttaman metallin lisäyksen haitanarviointi edellyttää kohteen taustapitoisuuden ja yleisimpien ominaispiirteiden tuntemista.
Kohteellisen pitoisuustiedon koostaminen perustilaselvityksen yhteydessä
Kaivoshanke on vaiheittain etenevä prosessi. Jo malminetsintä vaiheessa kertyy tietoa tutkimusalueen maaperästä ja kallioperästä. Yleensä viimeistään kaivospiirihakemusvaiheessa koostetaan ympäristötiedon perustilaselvitys, jonka yhtenä tarkoituksena on antaa lähtötaso maaperän kemiasta seurantaohjelmia varten. Perustila selvitetään ennen kuin on ryhdytty ympäristöä merkittävästi muuttaviin toimenpiteisiin.
Näytteet kerätään toiminnan arvioidulta vaikutusalueelta. Näytteet kerätään ja analysoidaan maaperän eri materiaaleista, joiden avulla toiminnan vaikutuksia myöhemmin seurataan. Pintamaa eli tavallisesti sammal- ja humusnäytteet antavat alkuainepitoisuuksien lähtötason ilman kautta tapahtuvalle metallien kulkeutumiselle. Pohjamaan, tavallisimmin moreenin, kemian lähtötilannetiedot sisältyvät myös perustilaselvitykseen.
Luontaisia taustapitoisuuksia
Metallien alueellisesta vaihtelusta ympäristön eri materiaaleissa on tuotettu laajasti tietoa. Geologian tutkimuskeskus (GTK) on kerännyt systemaattisesti tietoja alkuaineiden pitoisuuksista eri maalajeissa.
Koko maan kattavat kartoitukset sisältävät tietoja metallien pitoisuuksista Suomen yleisimmässä maalajissa moreenissa (Koljonen 1992, Salminen 1995). Suomen harjujen ja reunamuodostumien kartoitusohjelma kattaa karkealajitteisten mineraalimaalajien alkuainepitoisuudet (Salminen et al. 2007).
Taajamageokemialliset GTK:n taustapitoisuuskartoitukset ovat tuottaneet tarkentavaa lisätietoa useiden kaupunkien ja asutuskeskusten alkuainepitoisuuksista mukaan lukien metallit. Tämä aineisto on ollut pohjana GTK ja Suomen ympäristökeskuksen toteuttamassa valtakunnallisessa taustapitoisuusrekisterissä TAPIR. Eri provinssien tilastolliset tunnusluvut ovat saatavilla internetistä osoitteesta http://www.gtk.fi/tapir.
Maa- ja elintarviketeollisuuden tutkimuskeskus (MTT) on kartoittanut kattavasti peltojen alkuainepitoisuuksia kansallisissa seurantaohjelmissa (Erviö et al. 1990, Mäkelä-Kurtto et al. 2007). Lisäksi erillistutkimukset ovat tuottaneet tietoa peltojen metallipitoisuuksista (Hatakka et al. 2007).
Metsäntutkimuslaitoksen (Metla) nk. valtakunnallisessa metsäinventoinnissa on 488 pysyvää tutkimuspistettä, joista on otettu näytteitä vuosina 1986-1989 ja 1995 (Tamminen 2004). Metla on lisäksi tutkinut metallilaskeumaa metsäsammalnäytteistä 1980 puolivälistä alkaen (Piispanen 2006).
Vertailutietoa pinta- ja pohjamaan metallipitoisuuksien vaihtelusta pohjoismaissa ja Baltian alueella löytyy myös Baltic Soil Survey tutkimuksen tuloksista. (Tarvainen ja Kuusisto 1999, Reiman et. al 2003). Koko Eu:n laajuista alueellista vertailutietoa löytyy FOREG projektin tuottamana (Salminen et al. 2005).
Valtioneuvoston asetuksessa maaperän pilaantuneisuuden ja puhdistustarpeen arvioinnista (214/2007) on annettu usealle metallille luontainen taustapitoisuus maaperässä viitteeksi maaperän pilaantuneisuuden arviointiin (VnA 214/2007, Valtioneuvoston asetus maaperän pilaantuneisuuden ja puhdistustarpeen arvioinnista).
Metallien määritysmenetelmistä
Metallit voivat olla maaperässä pysyvässä ja heikosti kulkeutuvassa tai liukoisessa ja helpommin liikkuvassa muodossa. Haitta-aineiden olomuodosta riippuu, kuinka helposti ne ovat eliöstön saatavilla, tai kuinka helposti ne voivat lähteä kulkeutumaan olosuhteiden muuttuessa. (Nikkarinen et al. 2008)
Biosaatavuus maa-aineksesta vaikuttaa merkittävästi myös ihmisen altistumuiseen: montako prosenttia aineesta lopulta irtoaa maa-aineksesta/imeytyy elimistöön. Koska useimmiten sitä ei tiedetä, oletusarvoksi biosaatavuudelle riskinarviossa asetetaan 100 %.
Kokonaispitoisuuden analysointi
Maaperän kuparin, nikkelin, koboltin ja sinkin kokonaispitoisuudet määritetään yleisimmin alle 2 mm raekokofraktiosta happouutosta.
Yleisin kivennäismaille käytetty uuttomenetelmä on kuningasvesiliuotus. Menetelmä perustuu ISO 11466 – standardiin. Kuningasvesi uuttaa suurimmaksi osaksi sulfideihin, trioktaedrisiin kiilteisiin (esim. biotiittiin), savimineraaleihin, suolamineraaleihin ja sekundäärisaostumiin sitoutuneet alkuaineet (Dolezal et al. 1968, Niskavaara 1995). Metallien osalta kuningasvesiliuotuksen voidaan katsoa kuvastavan maaperän kokonaispitoisuutta riittävän hyvin.
Runsaasti eloperäistä ainesta sisältäville näytteille suosituin kokonaispitoisuuden määrityksessä käytetty hajotusmenetelmä on mikroaaltouunitehosteinen typpihappouutto (US EPA 3051). Happohajotuksen jälkeen metallien mittaaminen uutteesta tehdään tavallisimmin ICP-AES tai ICP-MS laitteella. Viimeksi mainitulla laitteella pystytään määrittämään luotettavasti pieniä pitoisuuksia.
Satakunnan alueen taustapitoisuuskartoituksen (Kuusisto et al. 2007) yhteydessä tehtiin metallien pitoisuusvertailu käyttäen kuningasvesi- ja typpihappouuttoa. Nikkelin, kuparin, sinkin ja koboltin pinta- ja pohjamaan kuningasvesi- ja typpihappouutto vastasivat hyvin toisiaan. Kaikille metalleille korrelaatiokerroin oli yli 0,97. (Jarva et al. 2007)
Kokonaispitoisuuksien vertailu ja päätelmät on tarkoituksenmukaista tehdä saman maakerroksen, maalajin ja yhtenevän määritysmenetelmän kesken. Pilaantuneen maan asetuksen kynnys ja ohjearvot perustuvat alle 2 mm fraktioon ja kuningasvesiuuttoon.
Saatavan metallipitoisuuden analysointi
Yleisesti käytetty menetelmä maan pintanäytteille on laimea bariumkloridiuutto 0,1 M BaCl2 + EDTA. Menetelmää käytetään humusnäytteille liuottamaan partikkelien pintaan fysikaalisesti adsorboituneita ioneja. Metsäntutkimuslaitoksen käyttämä menetelmä on 0,1 M BaCl2 + EDTA (7,5 g humus/150 ml).
Toinen kansainvälisesti yleisesti käytetty heikkouuttomenetelmä on 1 M ammoniumasetaattiuutto pH 4,5, missä kiinteä näyte : uuttoliuossuhde on joko 1:5 tai 1:10.MTT:n seurannoissa käyttämä menetelmä peltomaille on ammoniumasetaattiuutto pH 4,65 + EDTA. Uutossa liukenevat näytetyypin mukaan vaihdellen sekä fysikaalisesti, että kemiallisesti maarakeiden pintaan adsorboituneet ionit, liukoiset suolat, karbonaatit ja puolikiteiset raudan, alumiinin ja mangaanin sekä muiden metallien hydroksidisaostumat (Dolezal et al. 1968, Righi et al. 1997).
Suositeltavaa kohteellisessa ihmisten ja eliöiden metalleille altistumisen ja vaikutusten arvioinnissa on käyttää heikkouutolla saatua maaperän metallipitoisuutta kokonaispitoisuuden lisäksi, jos mittaustulokset on käytettävissä tai mahdollista hankkia.
Maaperän metallien kokonaispitoisuudet ja riskinarviointi
Yleisenä tapana on analysoida näytteen alle 2 mm lajitteesta alkuaineen kuningasveteen liukeneva osa. Kuningasveteen liuenneiden metallien pitoisuudet kuvastavat lähinnä metallien kokonaismäärää maaperässä. Siitä kaikki ei ole eliöstön saatavilla. Osa ympäristön metallien kokonaismäärästä on sitoutunut maaperän olosuhteissa pysyviin yhdisteisiin. Merkittävää maaperän metalleille altistumista ei tapahdu niin kauan kun metallit pysyvät maaperässä liukenemattomassa kiinteässä muodossa. Maaperän metallien kokonaispitoisuudet eivät täten ole paras lähtötieto riskinarviointiin mutta useimmin tieto, joka on käytettävissä.
Maaperässä saatavilla olevia helppoliukoisia metallipitoisuuksia on tavallisesti arvioitu käyttäen heikkouuttoja. Kansainvälisesti yleisesti käytetty menetelmä on 1 M ammoniumasetaattiuutto pH 4,5.
Luonnontilaisen moreenin alle 2 mm fraktiossa metallien "saatavan" pitoisuuden on havaittu olevan vain 1-5% totaalipitoisuudesta (Tarvainen & Kallio 2002). Orgaanisissa maalajeissa, peltomailla ja metalleilla kuormittuneilla alueilla liukoisuusprosentti vaihtelee huomattavasti. Kohteen maaperän olosuhdetekijät erityisesti - happamuus, hapetus-pelkistys, mineraalien rapautuvuus ja orgaanisen aineksen määrä, säätelevät metallien kulkeutumista tai pidättymistä maakerroksiin.
Haitta-aineiden kulkeutuminen
Haitta-aineiden kulkeutuminen maaperän pintaosista syvemmälle riippuu maalajista ja haitta-aineen kulkeutumisominaisuuksista. Vesi on erilaisten kemiallisten ainesten pääasiallinen kulkeutumisväline.
Maaperän koostumus on yksi merkittävä tekijä potentiaalisten haitta-aineiden liikkumiselle ja pidättymiselle maa-ainekseen. Haitta-aineita pidättävät maaperässä erityisesti orgaaninen aines, metallien (esim. Fe, Al, Mn) muodostamat saostumat ja savimineraalit. Myös maa-aineksen raeokoko vaikuttaa suoraan sen ominaispinta-alaan. Partikkelien pienentyessä ominaispinta-ala kasvaa, joka lisää mahdollista haitta-aineiden kiinnittymispinta-alaa. (Blume & Brümmer 1987)
Hapetus-pelkistys-potentiaali (redox -potentiaali) ja pH ovat maa-aineksen tärkeitä ominaisuuksia erityisesti metallisten haitta-aineiden liukoisuuden ja kulkeutumisen kannalta. Yleisesti ottaen metallien liukoisuus on voimakkainta happamissa pekistävissä olosuhteissa. pH:lla on redox-potentiaalia suurempi merkitys (Chuan et al. 1996). Redox ja pH –olosuhteiden muuttuessa esimerkiksi pohjaveden pinnan tason vaihdellessa ja pH:n laskiessa maaperään sitoutuneet haitta-aineet voivat lähteä uudelleen liikkeelle.
Maaperän kationinvaihtokapasiteetti (CEC) mittaa maaperän puskurikapasiteettia happamuutta vastaan ja kykyä pidättää kationeja maaperän hiukkasten pinnoille. Kationinvaihtokapasiteetin suuruus riippuu pääasiassa maaperän partikkelien pintojen ominaisuuksista. Mitä enemmän aineksen pinnoilla on negatiivisesti latautuneita kohtia, sitä paremmin ne houkuttelevat positiivisia kationeja. Maa-aines, jonka partikkelien yhteenlaskettu pinta-ala (m2/g) on suuri, omaa yleensä myös korkean CEC-arvon. (Kabata-Pendias 2001)
Pohjavesivaikutus
Syvemmällä olevan maaperän haitta-ainepitoisuudet saattavat muuttua pohjaveden vaikutuksen johdosta. Maaperä saattaa pidättää pohjaveden mukana kuljettamia haitta-aineita esimerkiksi niiden saostuessa. Saostumista tapahtuu erityisesti karkeammissa lajittuneissa maalajeissa, joissa happea on saatavilla.
Hienojakoisessa maalajissa haitta-aineita sitoutuu erityisesti savimineraaleihin.
Tarkkaa pohjaveden aiheuttaman haitta-aineiden vaikutusta maaperään on vaikea laskea, mutta vaikutuksia voidaan arvioida tarkastelemalla pohjaveden mukana kulkeutuvien haitta-aineiden reittejä ja määriä.
Kaivostoiminnan aiheuttamien maaperäpitoisuuksien arvioiminen
Kaivostoiminnan päästöjen vaikutus maaperään kaivosalueen ulkopuolella (maaperän kuormittuminen ja mahdollinen pilaantuminen) ja siihen liittyvä ekotoksikologinen riski ja terveysriski kaivosalueen ulkopuoliselle väestölle on arvioitava. Tässä tarkastellaan kaivosalueen ulkopuolisen ympäristön maaperää, ei kaivosalueen maaperää; maaperän kuormittumisen arviointia ja siihen liittyvää terveysriskinarviota.
Päästöt maaperään kaivosalueelta
Kaivosalueen ympäristön maaperään päätyy kaivostoimintaan liittyen päästöjä pääasiassa ilmasta pölylaskeumassa (kuivalaskeumana, sateen mukana). Pistemäisestä lähteestä tuleva päästö aiheuttaa tyypillisesti maaperään pitoisuusgradientin, jossa aineen pitoisuudet ovat suurimmat lähteen läheisyydessä ja pienenevät vähitellen etäisyyden kasvaessa.
Ratkaisevia tekijöitä pölypäästön leviämisessä ympäristöön on
- pölyn hiukkaskokojakauma
- päästölähteen korkeus maaperästä
- ilmasto/sääolosuhteet (mm. vallitseva tuulen suunta)
- maasto-olosuhteet (mm. leviämisen esteet.
Pölypäästöjen leviämisestä ilmateitse ja sen määrittämisestä on tarkemmin kohdassa Pölypäästöt kaivosalueelta.
Jossakin määrin maaperään saattaa kaivosalueelta tulla päästöjä esimerkiksi pintavesien (sadevedet, lumen sulamisvedet) mukana, ja pintavedet saattavat kuljettaa päästöjä maan pinnalla paikasta toiseen. Näitä päästöjä on todennäköisemmin tärkeämpää tarkastella ja arvioida pintavesiin päätyvinä päästöinä, kuin maaperään jäävänä päästönä. Aineet ovat veteen liuenneina. Ne voivat sitoutua maaperään, mutta liikkuvat veden mukana. Jos kaivosalueen pintavedet on merkittävä kaivosaleen ympäristön maaperän puhtauteen vaikuttava tekijä, niiden osuus ja merkitys maaperän pilaajana on myös arvioitava.
Kaivosalueen ympäristön maaperään päätyvien päästöjen merkitys alueen pohjaveden laatuun on myös arvioitava.
Koska kaivoshankkeen suunnitteluvaiheessa asiaa joudutaan arvioimaan hieman erilaisen tiedon pohjalta kuin voidaan tehdä toimivan kaivoksen ympäristössä, arviointi on jaettu vastaavasti.
- A. Kaivosalueen ympäristön maaperän kuormittuminen - arviointi kaivostoiminnan suunnitteluvaiheessa
- B. Kaivosalueen ympäristön maaperän kuormittuminen - arviointi toimivan kaivoksen ympäristössä
A. Kaivosalueen ympäristön maaperän kuormittuminen - arviointi kaivostoiminnan suunnitteluvaiheessa
Maaperän kuormittumisen arviointi kaivostoiminnan suunnitteluvaiheessa
Maaperän kuormittuminen aineella ja aineen pitoisuus maaperässä kuormittumisen jälkeen voidaan laskea seuraavalla kaavalla:
C _soil = C_ tausta + C_ lisäys
- C _ tausta on aineen taustapitoisuus arvioitavassa ympäristössä (aineen pitoisuus perustilaselvityksessä tai vastaava relevantti aluetta edustava pitoisuustieto).
- C _lisäys on kaivostoiminnasta syntyvä lisäys aineen pitoisuuteen maaperässä.
C-soil-arvoa/pitoisuutta käytetään aineen vallitsevana potoisuutena maaperässä terveysriskin arviointiin.
C_lisäyksen määrittäminen:
Arvioitavan aineen pitoisuus pölyssä päätellään tässä vaiheessa oletuksella, että pölyn koostumus vastaa sen materiaalin koostumusta minkä käsittelystä pölypäästö aiheutuu.
Pölylaskeuma arvioitavan alueen maaperään mallitetaan kavantitatiivisena (ensisijainen suositus, esim. mg/m2/vuosi).
Aiempien kaivosympäristötutkimuksien perusteella voidaan päätellä, että pölyn aiheuttamat maaperän pitoisuusmuutokset havaitaan selvimmin alle 1 km etäisyydellä keskeisestä toiminta-alueesta. Noin 80 % pölystä laskeutuu alle 500 m etäisyydelle päästölähteestä (Nikkarinen & Karlsson 2012). Jos oletetaan, että loput 20 % laskeutuu alle 1 km etäisyydelle, voidaan lisätyn haitta-ainekuormituksen vuosittainen määrä karkeasti arvioida myös aineen kokonaispäästöstä kaivosalueelta. Näiden kahden eri arviointitavan antamia tuloksia on syytä verrata toisiinsa, jos molemmat laskelmat on mahdollista tehdä.
Pölyämisen aiheuttamia tietyn alkuaineen pitoisuusmuutoksia maaperässä voidaan arvioida kaavalla
A+B+C
Jossa
- A= luontainen pitoisuus humuksessa (x mg/kg)
- B = prosessoinnin aiheuttama laskeuma/kk (x mg/kg) 500 m etäisyydelle / tuotettu rikaste (louhinta, murskaus,lastaus, kuljetus)
- C= rikastushiekan aiheuttama laskeuma /kk (x mg/kg) 500 m etäisyydelle
A:na käytetään alueen perustilaselvityksestä saatua pitoisuustietoa. Jos sitä tietoa ei vielä ole, käytetään vastaavaa edustavaa tietoa maaperän taustapitoisuudesta.
B ja C arvioidaan pölyämismallien ja pölyn koostumuksen perusteella.
Pitoisuusmuutokset pohjavedessä
Pohjaveden mukana kulkeutuvien haitta-aineiden vaikutuksia voidaan arvioida tarkastelemalla pohjaveden mukana kulkeutuvien haitta-aineiden reittejä ja määriä.
Pohjaveden pilaantumisriskiä voidaan arvioida Kd-arvojen perusteella.
Pohjaveden pilaantumisriskiä alkuaineille voidaan arvioida Kd-arvojen perusteella. Kd-arvojen perusteella lasketaan näytekohtaisesti kullekin alkuaineelle sallittu enimmäispitoisuus maaperässä, joka ei aiheuta pohjaveden pilaantumisriskiä kaavalla (Tarvainen & Jarva 2009):
SVPpv = (RfCpv * 10-3 * Kd) / DF
jossa
- SVPpv = pohjaveden pilaantumisriskin perusteella määritetty sallittu enimmäispitoisuus maaperässä (mg/kg)
- RfCpv = pohjaveden sallittu enimmäispitoisuus alkuaineelle X (µg/l). Tarvainen & Jarva (2009)-tutkimuksessa on käytetty talousveden laatuvaatimuksia pienille yksiköille ja koboltin osalta WHO:n enimmäispitoisuutta juomavedelle (Ympäristöministeriö 2007)
- Kd = maa-vesi –jakautumiskerroin alkuaineelle X (l/kg)
- DF = laimenemiskerroin huokosveden ja pohjaveden välillä. Oletusarvona on käytetty arvoa 1/10
PIMA-ohjeistukseen liittyvät ainekohtaiset SVPpv-arvot on Haitallisten aineiden tietokorteissa (Reinikainen 2007).
Pohjaveteen liittyvä terveysriskinarvio on kuvattu kohdassa Pitoisuudet pohjavedessä.
B. Kaivosalueen ympäristön maaperän kuormittuminen - arviointi toimivan kaivoksen ympäristössä
Kaivoksen toiminnan aikana, ja sen jälkeen, aineiden pitoisuuksista kaivosalueen ympäristön maaperässä on toiminnan seuranta-ohjelmien mukaista pitoisuustietoa. Perustilaselvitykseen valittujen aineiden pitoisuudet tulee, toiminnasta, aineista ja päästömääristä riippuen määrittää seurantaan valitulla tavalla ja frekvenssillä.
Toimivan kaivoksen riskinarvioon käytetään mitattua pitoisuustietoa maaperästä. Siltä osin kuin mitattu tieto ei kata riskinarviossa tarvittavaa tietoa, pitoisuuksia maaperässä voidaan/tulisi edelleen mallittaa. Mallitukseen toimivasta kaivoksesta on käytettävissä tarkempaa, todettua päästötietoa kuin on kaivostoiminnan suunitteluvaiheessa.
Oleellista on määrittää/rajata aineelle pitoisuusvyöhyke kaivosympäristössä, jonka sisällä aineen/aineiden pitoisuudet maaperässä ovat ympäröivästä taustasta koholla. Pistemäiset päästölähteet aiheuttavat ympäristönsä maaperään tyypillisesti pitoisuusgradientin, jossa pitoisuudet ovat suurimmat päästölähteen läheisyydessä ja pitoisuus maaperässä laskee etäisyyden kasvaessa.
Pitoisuusvyöhyke on syytä jakaa alavyöhykkeisiin, jos pitoisuusgradientti on suuri, ja tehdä riskinarvio erikseen eri alavyöhykkeen pitoisuuksille. Arviointivyöhykkeitä määriteltäessä on syytä huomioida myös ihmisten potentiaalinen altistuminen maaperästä kyseisille aineille (asutus, keräilytuotteiden käyttö, mahdollinen maatalous jne.).
Maaperän kuormittumisen arviointi toimivan kaivoksen ympäristössä
Toimivan kaivoksen ympäristön maaperän kuormittuminen arvioidaan aineen mitatuista pitoisuuksista kaivosympäristössä/arvioitavalla alueella.
- Aineen mitattua pitoisuutietoa maaperässä käytetään myös terveysriskin ja ekotoksisen riskin arvioon.
Jos maaperän kuormittuminen aineella (todettu lisäys maaperässä) on tarpeen määrittää erikseen, se voidaan päätellä kaavalla:
C_ lisäys = C _soil - C_ tausta
- C _lisäys on kaivostoiminnasta syntyvä lisäys aineen pitoisuuteen maaperässä.
- C_soil on aineen todettu pitoisuus maaperässä (mitattu pitoisuus, jos saatavilla).
- C _ tausta on aineen taustapitoisuus arvioitavassa ympäristössä (aineen pitoisuus perustilaselvityksessä tai vastaava relevantti aluetta edustava pitoisuustieto).
C_soil-arvoa/pitoisuutta käytetään aineen vallitsevana potoisuutena maaperässä terveysriskin arviointiin.
Pitoisuusmuutokset pohjavedessä
Arvioitavien aineiden pitoisuusmuutokset pohjavedessä arvioidaan toimivan kaivoksen ympäristössä samalla tavalla kuin kaivostoiminnan suunnitteluvaiheessa.
Katso myös
Viitteet
Blume, H.-P. & Brümmer, G., 1987. Prognose des Verhaltens der Schwermetalle in Böden mit einfachen Feldmethoden. Mittlg. Dtsch. Bodenkundl. Ges., 53, 111-117.
Chuan, M.C., Shu, G.Y. and Liu, J.C., 1996. Solubility of Heavy Metals in a Contaminated Soil; Effects of Redox Potential and pH, Water, Air and Soil Pollution 90: 543-556.
Dolezal, J., Povondra, P. and Sulcek, Z., 1968. Decomposition Techniques in Inorganic Analysis: Iliffe Books, London.
Ervio, R., Makela-Kurtto, R., Sipola, J., 1990. Chemical characterization of Finnish agricultural soils in 1974 and in 1987. In: Acidification in Finland. Springer-Verlag, Berlin, pp. 217–234.
Hatakka, T., Mäkelä-Kurtto, R., Tarvainen, T., Laakso, P., Laitonen, A., Eurola, M. 2007. Trace elements in top- and subsoil on selected crop and dairy farms in Finland in 2004. Agrifood Research Reports 108: 80 s. http://www.mtt.fi/met/pdf/met108.pdf Verkkojulkaisu päivitetty 14.12.2007
Jarva, J.; Tarvainen, T.; Kallio, E. 2007. Analytical methods and geochemical baselines in Satakunta region, Finland. In: Eighth Finnish Conference of Environmental Sciences, Mikkeli, May 10-11, 2007 : proceedings. Kuopio: University of Kuopio, 50-53.
Kabata-Pendias, A. 2001. Trace Elements in Soils and Plants, Third Edition. Taylor & Francis Group, 2001, 413 pages.
Koljonen, T., 1992. Suomen geokemian atlas. Osa 2. Moreeni. Arseenin esiintyminen moreenissa. Geologian tutkimuskeskus. 218 s. kuv., taul. ISBN 951-690-379-7
Kuusisto, E. Tarvainen T. Huhta P. 2007. Alkuaineiden taustapitoisuudet eri maalejeissa Satakunnan alueella. Geologian tutkimuskeskus, arkistoraportti S41/1141/2007/11 Espoo 22s.
Mäkelä-Kurtto, R., Eurola, M., Laitonen, A. 2007. Monitoring programme of Finnish arable land: Aqua regia extractable trace elements in cultivated soils in 1998. Agrifood Research Reports 104: 61 s.
Nikkarinen, M., Karlsson, T. 2012. Yhteenvetoraportti Luikonlahden humustutkimuksista vv. 2010–2011. Minera projekti. Geologian tutkimuskeskus, Kuopio
Nikkarinen, M., Kollanus, V., Ahtoniemi, P., Kauppila, T., Holma, A., Räisänen, M.L., Makkonen, S. & Tuomisto, J.T. (toim.), 2008. Metallien yhdennetty kohdekohtainen riskinarviointi. Abstract: Integrated site-specific risk assessment of metals. Kuopion yliopiston ympäristötieteen laitoksen monistesarja 3/2008. kuopion yliopisto, Kuopio. 401 s. http://fi.opasnet.org/fi_wiki/images/c/c7/Finmerac-raportti.pdf
Niskavaara, H. 1995, A comprehensive scheme of analysis for soils, sediments, humus and plant samples using inductively coupled plasma atomic emission spectrometry (ICP-AES), Geological Survey of Finland, Special Paper 20, 167-175.
Piispanen, J., Poikolainen, J. & Kubin, E. 2006. Raskasmetalli- ja typpilaskeuman seuranta sammalten avulla. Julkaisussa: Niemi, J. (toim.). Ympäristön seuranta Suomessa 2006-2008. Suomen ympäristö 24: 89-90.
Reimann, C., Siewers, U., Tarvainen, T., Bityukova, L., Eriksson, J., Gilucis, A. et al., 2003. Agricultural soils in Northern Europe: a geochemical Atlas, Geologisches Jahrbuch, Sonderhefte, Reihe, D., 3-510-95906-XSchweizerbart'sche Verlagsbuchhandlung, Stuttgart (2003) Heft SD 5
Reinikainen J. 2007. Maaperän kynnys- ja ohjearvojen määritysperusteet. Suomen Ympäristö 23/2007. Suomen ympäristökeskus 2007.
Righi, D., Räisänen, M.L. & Gillot, F. 1997. Clay transformations in podzolized tills in central Finland. Clay Minerals 32, 531-544.
Salminen, R. (ed.) 1995. Alueellinen geokemiallinen kartoitus Suomessa 1982-1994. Summary: Regional geochemical mapping in Finland in 1982-1994. Geologian tutkimuskeskus. Tutkimusraportti 130. 47 p. + 24 app. maps.
Salminen, R. (chief ed.) 2005. Geochemical Atlas of Europe. Part 1 - Background Information, Methodology and Maps. Geological Survey of Finland, Otamedia Oy, Espoo, 525 pp.
Salminen, R., Tarvainen, T. & Moisio, T. 2007. Alkuaineiden taustapitoisuudet Suomen harjujen ja reunamuodostumien karkealajitteisissa mineraalimaalaijeissa, Geologian tutkimuskeskus GTK, Tutkimusraportti 167.
Tamminen, P., Starr, M. & Kubin, E. 2004. Element concentrations in boreal, coniferous forest humus layers in relation to moss chemistry and soil factors. Plant and Soil 259(11): 51-58.
Tarvainen, T., Jarva, J., 2009. Maaperän Kd-arvot ja geokemiallinen koostumus Pirkanmaalla ja Uudellamaalla. Geologian tutkimuskeskus, arkistoraportti S41/2009/59. 15 s.
Tarvainen, T.; Kallio, E. 2002. Baselines of certain bioavailable and total heavy metal concentrations in Finland. In: Environmental geochemistry : selected papers from the 5th International Symposium, Cape Town, South Africa, 24-29 April 2000. Applied Geochemistry 17 (8), 975-980
Tarvainen, T., Kuusisto, E. 1999. Baltic soil survey : Finnish results. In: Geological Survey of Finland, Current Research 1997-1998. Geological Survey of Finland. Special Paper 27. Espoo: Geological Survey of Finland, 69-77.
VNa 214/2007. Valtioneuvoston asetus maaperän pilaantuneisuuden ja puhdistustarpeen arvioinnista.
Ympäristöministeriö 2007. Maaperän pilaantuneisuuden ja puhdistustarpeen arviointi. Ympäristöhallinnon ohjeita 2.