H2020 V1

Opasnet Suomista
Versio hetkellä 11. kesäkuuta 2014 kello 07.27 – tehnyt Petteri Laine (keskustelu | muokkaukset)
Siirry navigaatioon Siirry hakuun



Johdanto

Horizon2020-puiteohjelma käynnistyi vuoden 2014 alussa. Ohjelmakomiteoiden työohjelmat vuosille 2014-2015 on julkaistu, ja ensimmäiset H2020-haut ovat jo sulkeutuneet. Vuosien 2014-2015 tulevat haut ovat jo selvillä, ja niiden sisältöön ei enää pysty vaikuttamaan. EU-komissiossa valmistellaan kuitenkin jo vuosien 2016-2017 työohjelmia. Niiden sisältöön vaikuttamisen aika on nyt! Tulevien työohjelmien hakuihin pitää saada aiheita, jotka kiinnostavat suomalaisia hakijoita ja joiden hauissa suomalaisilla hakijoilla on mahdollisuus menestyä. Tällä sivustolla kerätään suomalaisten osallistujien aiheidoita Horizon2020-ohjelman ICT-työohjelmaan 2016-2017.

Tämä sivusto on julkinen eli sitä pystyy kuka tahansa lukemaan. Kommentointia varten pitää rekisteröityä.


Yhteyshenkilöt: Katja Ahola (Tekes), Sami Majaniemi (LVM), Marko Heikkinen (Tekes), Juha Latikka (Suomen Akatemia), Elina Holmberg (Tekes), Hannu Hämäläinen (STM) ja Jouko Hautamäki (Tekes)


Virallinen kommentointiaika: 6.5.2014 - 28.5.2014.

Kontaktoitavat tahot

  1. Yritykset
  2. Tutkimuslaitokset
  3. Yliopistot
  4. Muut tahot

Tutkimusaiheet / Research topics

Tähän kohtaan toivomme erityisesti aihe-ehdotuksia ja kommentteja. Kirjoitathan tekstin mielellään englanniksi.

Mitä aihepiirejä halutaan saada aukaistua tuleviin H2020 ICT-hakuihin? Voidaanko/kannattaako samalla tehdä avointa ennakointityötä sen suhteen mitä Suomessa pitää lähitulevaisuudessa tutkia/opettaa?


NOKIA’s (Networks) contribution to H2020 Work Programme 2016-2017

From Nokia’s (Networks) perspectives, new research is needed on the following Mobile Broadband key development areas (Note: the summary or the 5G requirements have been listed after these development areas):


1. Enable 1,000 times more capacity


2. Reduce latency to milliseconds


3. Teach networks to be self-aware


4. Personalize the network experience


5. Telco Clouds


6. Flattening total energy consumption


7. Requirements for 5G

In the following, the requirements for 5G have been summarized:


Demos Helsinki suggestions to H2020 WP 2016-2017

The core contribution of technology to society is usually the behavior change that new technologies enable. Demos Helsinki proposes

1. Retrofitting ICT in cities and buildings to make us behave smarter in smarter environments

2. Using ICT to enable preventive and inclusive healthcare and allow autonomy in healthy behavior for everyone.

3. Building tools and interfaces to enable socially responsible and participatory behavior

4. Using ICT to support sustainable lifestyles

Further, Demos Helsinki proposes ICT intensive futures forecasting to improve resilience in investments, education goals and science projects.


Qlu Oy: Proposal for a co-operation program to the Horizon 2020 EUI Research and Innovation program

Program Description

The goal for this program is to cost-efficient methods for building teching environments optimized for the needs of hard-of-hearing (HOH) students, but also serving efficiently the needs set by the new network based teaching methods. The main goal is to make it possible for everybody, also the HOH students, to participate efficiently in the bi-directional discussions in the teaching environment. This is especially important in learning foreign languages and also in the discussion based teamwork. These environments also have value in business and social life, which also are more and more operating in the network environment.


Working group

We propose that this program will be executed as a co-operation between our company, Qlu Oy and one or several finnish communal operators. If seen feasible, the community could be expanded toi include one or several communiocation technology companies and/or academic research groups.

Contact: Juha Nikula, Managing director, Qlu Oy, +358 40 5881138, juha.nikula(at)qlu.fi


Aalto yliopisto (Eero Hyvönen):

  • Linked Data
  • Linked Data quality and re-use
  • Knowledge Discovery in Linked Data
  • Visualization and exploration of Linked Data
  • Semantic knowledge extraction from unstructured data
  • Linked Big Data


Safety:

- There is a lot of SME industry where occupational and industrial safety and safety culture is at lower level than in large enterprises that can invest more to safety related things. One solution could be ICT based systems for risk assessment and risk identification. It is important to bring the safety improving solutions to the practical level in SMEs.

- Reliability, availability, maintainability and safety (RAMS) related issues shall be considered as an essential part of system engineering and as a whole from the beginning of the product design. RAMS related issues are very important in all machines and production systems but especially in paper industry and large manufacturing and production lines. Already now the production systems and machines include distributed control systems and a lot of diagnostics. Such ICT solutions are necessary in the product design that enable an effective RAMS design for products and production systems.

- Furthermore, internet of things (IoT) is strongly coming to industrial systems and machines, and this is a feature to be included to the product characteristics. IoT brings a lot of possibilities, but also risks and threats (information security, personal safety, etc.). These threats and measures to tackle these threats should be studied so that severe accidents, relating to both safety and security, can be prevented.


Future network and device evolution

University of Oulu / Markku Juntti

1. Improved access networks and enabling technologies for better energy and spectral efficiency as well as design and operation flexibility. Including software defined radios and networks. - Ultradense networks - Distributed antenna systems - Cloud processing

2. End-to-end optimization of wireless networks and connections for internet of connected objects and industrial internet to enable efficient use and support for big data applications over wireless connections. - Big data over wireless - Application driven connection optimization

3. Device and antenna technologies based on new materials: multimode and reconfigurable antenna technologies. - New materials - New antenna solutions


LVM/LPO interest groups/ Tulevaisuuskatsaus

Digitalisaatio

Teema liittyy laaja-alaisesti koko yhteiskunnan rakenteeseen, toimintaan ja kehitykseen. Teemassa ei rajoituta pelkkään digitaaliseen tekniikkaan ja raaka-dataan liittyvään problematiikkaan, vaan huomiota tulee kiinnittää myös sosiaalisten vaikutusten ja tiedonjalostusketjun toimintamalleihin liittyviin aiheisiin. Digitaalisen yhteiskunnan kehittäminen vaatii tiivistä julkisen ja yksityisen sektorin välistä yhteistyötä. Tältä osin haasteena on määrittää julkisen ja yksityisen sektorin roolit, tehtävät ja vastuut kehittämisen eri vaiheissa. Tarkoituksena on luoda pohja digitaalisuuden edellyttämälle paradigman muutokselle. Digitalisoituneessa yhteiskunnassa data sekä siitä analytiikan avulla luotu tieto ja siihen perustuva päätöksenteko ovat keskeisiä lisäarvoa luovia tekijöitä. Tieto luo perustan innovaatioille, uudelle liiketoiminnalle sekä hallinnon rakenteiden uudistamiselle, joilla vastataan murroksessa olevan toimintaympäristön haasteisiin ja otetaan haltuun sen tarjoamat mahdollisuudet. Digitaalisen talouden kasvu edellyttää, että digitaalisten palveluiden turvallisuus kyetään takaamaan. Digitalisaation kehittämiseen liittyy automaation vaikutusten arviointi, sosioekonomiset vaikutukset, ennakointi ja järjestelmien testaus.

”Kaiken internet, internet of everything” ja Internet of Things ja sen hyödyntäminen liikenteessä on vahvasti mukana tulevaisuudessa.


Meriliikenne ja –teollisuus:

  • Teollisen internetin soveltamisesta meriteollisuuteen
  • big datan hyödyntäminen
  • Builging Information Modelling (BIM) ja elinkaaripalvelut
  • miehittämättömättömät ratkaisut
  • yritykset haluaisivat kehittää EU –projekteissa erityisesti tuotantoon (esim. robotiikka) ja tuotannonohjaukseen liittyviä innovaatioita
  • Tiedon laajempaa hyödyntämistä ja älyliikenteen edistämistä mm. meriliikenteen turvallisuuden parantamiseksi


Maritime, Waterborne:

  • automated time based emission measuring and reporting from process industry manu-facturing processes and impacts to greenhouse gas emissions to help to direct the pro-duction to be more eco-efficient
  • 4D/5D real time video virtualisation in maritime spatial planning and to prevent disasters in sensitive areas and also to help estimate and forecast how the spills would behave in case of different climate conditions, connections to other databases
  • 4D/5D video virtualisation in developing the logistics corridors in container and other freight transportation cases, how the heavy trucks impact on the roads and how the sea-port-inland port transport corridors should be developed and organised to lower the CO2 and other emissions.
  • Cost management reporting systems utilising big data and cloud databases
  • Fill rate optimization in global tarnsportation of goods
  • Packing and fillrate optimization in every step of the goods transportation from factory to end customer
  • Harbour time optimization at ship loading and unloading
  • Robot utilization at warehouse order picking
  • Energy saving robotics
  • Independently moving and working robots at ware houses
  • New pay per use business model for robot systems
  • Big data analyzis of robot systems
  • Robotics in house building


Ilmailu:

  • miehittämätön ilmailu Unmanned Aerial Vehicles
  • digitalisaatio on keskeinen osa miehittämättömän ilmailun kehitystä
  • Laukkujen kuljetus lentokoneeseen voitaisiin automatisoida.
  • Sähköinen automaattitraktori voisi vetää koneen portilta kiitoradalle
  • SESAR –ohjelma sisältää paljon digitalisaatiota, tiedon hyödyntämistä ja automatisaatiota. Esim lentokentän liikennevirtojen ohjailu, häiriötilanteet (tuhkapilvet, lumisateet ym).
  • Vaisala on kehittänyt lentokoneiden jäänestoon säästä riippuvan suoja-ajan laskentajär-jestelmän (Hold Over Time).


Miniature smart devices for detection of Atrial Fibrillation

Tuomas Valtonen, Tero Koivisto

Technology Research Center, Brahea Center, University of Turku

Atrial fibrillation (AF) is a very common cardiac anomaly, present in approximately 2% of all people, i.e. in approximately 140 million people globally. The condition becomes even more commonplace from the age of 65 – approximately five percent of all 70 year-old persons and more than 10% of all persons 85 years or older suffer from AF.

Approx. 15 million people suffer stroke worldwide each year; of these, 5 million die and another 5 million are permanently disabled. In the EU, more than 463,000 people annually die from a stroke. As the lifetime cost of a stroke is estimated at approximately 65,500 euros, strokes burden the EU economy by over 3,600 disability-adjusted life years and more than 38 billion euros each year.

Approx. 15–45% of all strokes are caused by AF. Hence, in Europe alone AF accounts for up to 208,000 deaths per year and costs up to 17.1 billion euros per year. In addition, strokes due to AF are more severe than when due to other causes, due to which the actual cost of AF may be even greater.

By means of new anticoagulant medication products approx. 70% of strokes could be prevented. AF typically begins as asymptomatic, in which case the patient remains unaware of the condition ("silent AF"). If we could detect AF at an early stage before it causes blood clots and strokes, the EU alone could avoid up to 145,000 deaths every year and costs up to 12 billion euros per year.

Detection of silent AF is a major challenge, as its symptoms may be sporadic and thus absent during medical check-ups: for example, in one study the median time for detection of AF was 84 days. Via long-term monitoring, e.g. with a duration of several weeks, it would also be possible to detect silent AF. By means of wide-scale screening of risk groups, e.g. persons older than 65 years, we would not only spare lives, but also enhance quality of life and achieve significant economical savings.

In order to detect AF, there is a growing need for a miniaturised smart devices which can be conveniently worn during long time periods, possibly lasting up to a year. The development of novel detection techniques will serve as an important building block in a smart system for tracking the progression from silent AF to permanent AF. Today’s knowledge of this type of progression is scarce at best, the main reason being the lack of suitable recording technology. A solution to this problem could have major impact on future healthcare as AF is the most common sustained arrhythmia in clinical practice, all too often leading to a stroke.

Aalto ARTS, Media Lab, Arki

Kari-Hans Kommonen

Strong Alternative Scenarios

In the EU, research funding is typically based on strongly programmed research calls, which are based on commonly accepted doctrines and assumptions concerning the development of society, technology and economy. This leads to systemic rejection of visions that diverge from these fundamental doctrines as a viable basis for research, and leads to a lack of diversity that seriously hampers the possibilities of Europe to generate viable alternatives to prevailing understandings and to develop truly innovative initiatives.

In future EU research programmes there would be thus a great need to strengthen radically the opportunities for new openings that diverge from the preprogrammed visions, and also make sure that the demands for consortia and project forms do not discriminate against insightful seeds of change.

Open Intellectual Property

In order for the R&D in Europe to benefit all citizens, communities and enterprises as opposed to be buried in the vaults of R&D labs and proprietary monopoly products, EU R&D funding should be only directed to support work that produces openly published and freely available and modifiable (open source) results.


Aalto University, suggested topics

Contact: Vuokko Lepistö-Kirsilä, tutkimusasiamies, Aalto-yliopisto Tutkimuksen tukipalvelut p. 050 381 6396.


1. Web of Building Data - dynamics, quality and security



2. Personalized diagnostics and care though big data analytics



3. Computational Synthetic Biology for Sustainable Bioeconomy



4. Future cognitive transport protocols



5. Proactive security



6. Security of software defined networking



7. Securing software-defined networks



8. Security for billions of ubiquitous and embedded devices



9. Personalized learning environments for learning computational thinking online



10. Beyond search - new intelligent interfaces to information



11. Smart cities: analysis of hetereogeneous and continuous streams of data



12. Social media: Analysis of social media streams



13. Health and well-being: Develop data-driven approaches to improve health and well-being



14. Algorithmic challenges in big-data analysis



15. Power over Ethernet



16. Wireless Systems Big Data



17. Censorship-resistant communications



18. Internet Trust



19. Distributed and Mobile Cloud Systems for Service Innovation



20. Quantum nanoelectronics



21. Internet Trust



22. Motivating physical exercise with digital games and augmentation



23. Real-time Biomechanics Simulation



24. Parallel programming models for ubiquitous services



VTT contribution to H2020 Work Programme 2016-2017

A) Business and application driven topics

1) Industial internet and productivity Solutions for internationally competitive Finnish core industries like forest industry, metal industry, building, oil refining, machine industry, business services and electric equipment: - Industrial measurements - Global asset management - Industrial internet

2) Technologies and services for hyper connected society Critical infrastructures, including transportation, energy, or buildings will be increasingly connected via information systems.. Hyper connectivity builds from sensoring via service architectures to understanding big data and eventually to utilizing diverse knowledge of human activity in digital society. - Smart infrastructure (cities, buildings, smart lighting, smart grids, …) - New digital services for society

3) Personalised Health Solutions - Personalised digital health services - Big (Health) data analytics and decision support - Wearable sensors and systems for wellness applications - Technologies for point-of-care diagnostics and self-tests

B) Enabling technologies

1) Micro, nano, and quantum technologies: Silicon microsystems, novel materials, advanced manufacturing and integration, novel sensors and systems, bio-interfacing, disruptive innovations by utilization of quantum mechanical effects, new era of computation power, data security

2) Functional printing (Thin Organic and Large Area Electronics - TOLAE): Printed and hybrid sensors and systems for healthcare, buildings and environment; autonomous sensor systems utilizing energy scavenging, energy storage, local signal processing and wireless data connection technologies; printed biosensors; Flexible and wearable solutions.

3) High performance sensing for industry, science, and society; Advanced measurement principles, devices and systems based on based on photonics /electromagnetics and biosensing; Development of measurement instruments and sensors; Miniature and mobile/portable solutions.

4) Future communications: 5G (radio access, network management, multimodal), optical connectivity components, sensor networks, Internet of things connectivity; Cloud technologies

5) Cyber security and privacy: Solutions providing prediction, situation awareness and resiliency against threaths. Solutions for data access and privacy. Security from silicon to cloud. Solutions for industry, business and society.

6) Data science and analytics: Methodologies and applications of data mining, data analysis, and decision making support for services in industries, health, and business. Cloud technologies and architectures.

Priorisointiperiaatteet

Koordinaatioryhmä määrittää yhteistyössä osallistujien kanssa, kuinka aihe-ehdotukset asetetaan tärkeysjärjestykseen. Koordinaatioryhmän muodostaa H2020-ohjelman virallisen ICT-komitean asiantuntijaryhmä, jossa on edustajat Tekesistä, Suomen Akatemiasta, LVM:stä ja STM:stä.

Joukkoistetut lobbaustavoite-ehdotukset Horizon 2020-ohjelman vuosille 2016-2017 alustavaan apilamalliin jäsenneltynä – aakkostettuna, anonymisoituina, juoksevalla numeroinnilla:

Arctic

1. Fully automated airports 2. Harbour time optimization at ship loading and unloading 3. Package handling automatization 4. Traficflow calibration and automation 5. Unmanned Aerial Vehicle networks

Bioeconomy

1. Computational Synthetic Biology for Sustainable Bioeconomy: Algorithms, modelling and simulations 2. Functional printing (Thin Organic and Large Area Electronics - TOLAE) 3. High performance sensing for industry, science, and society 4. Reaction libraries 5. Real-time Biomechanics Simulation

Cleantech

1. 4D/5D real time video virtualisation in maritime spatial planning and to prevent disasters in sensitive areas and also to help estimate and forecast how the spills would behave in case of different climate conditions, connections to other databases 2. 4D/5D video virtualisation in developing the logistics corridors in container and other freight transportation cases, how the heavy trucks impact on the roads and how the sea-port-inland port transport corridors should be developed and organised to lower the CO2 and other emissions 3. Applying Big Data an IoT in Maritime 4. Automated time based emission measuring and reporting from industry manu-facturing processes and impacts to greenhouse gas emissions 5. Builging Information Modelling (BIM) and life cycle services 6. Energy saving robotics 7. Independently moving and working robots at warehouses 8. Maritime safety via realtime analysis 9. Micro-, nano-, and quantum technologies R&D 10. Quantum nanoelectronics 11. Robotics 12. Unmanned solutions

Digital Economy and Services

1. Anonymisation of Wireless Systems Big Data, processing extreme large amount of Wireless Systems Big Data data, finding balance betweenlocal processing of Wireless Systems Big Data and transport of Wireless Systems Big Data etc. 2. Answering to 5G challenges 3. Answering to algorithmic challenges in big-data analysis 4. Augmented reality user interfaces, modelling engines and rendering farms 5. Beyond search - new intelligent interfaces to information 6. Big data analyzis of robot systems 7. Censorship-resistant communications 8. Cost management reporting systems utilising big data and cloud databases 9. Cutting costs and emissions by flattening total energy consumption of networks 10. Cyber security and privacy: Solutions providing prediction, situation awareness and resiliency against threaths. Solutions for data access and privacy. Security from silicon to cloud. Solutions for industry, business and society. 11. Data science and analytics: Methodologies and applications of data mining, data analysis, and decision making support for services in industries, health, and business. Cloud technologies and architectures 12. Digital content production network funding models 13. Distributed and Mobile Cloud Systems for Service Innovation 14. Fill rate optimization in global transportation of goods 15. Fraud and cheat testing in the face of Internet evolution 16. Future cognitive transport protocols that can adapt to dynamic changes in network performance and availability 17. Future communications: 5G (radio access, network management, multimodal), optical connectivity components, sensor networks, Internet of things connectivity; Cloud technologies 18. ICT intensive futures forecasting to improve resilience in investments, education goals and science projects 19. Industrial Internet and productivity Solutions for internationally competitive Finnish core industries 20. Internet of things (IoT) troubleshooting 21. Internent of Trust - components of the solution include: firewalls, intrusion detection, reputation management systems applied into all communications over the Internet 22. Knowledge Discovery in Linked Data 23. Linked big and open data 24. Linked Data quality and re-use 25. More spectrum, higher spectral efficiency and small cells shall provide up to 1,000 times more capacity in wireless access. 26. My Data encryption 27. New network based teaching methods 28. Open Intellectual Property - In order for the R&D in Europe to benefit all citizens, communities and enterprises as opposed to be buried in the vaults of R&D labs and proprietary monopoly products, EU R&D funding should be only directed to support work that produces openly published and freely available and modifiable (open source) results 29. Opening data in machine readable form in the Universities and by the public authorities 30. Packing and fillrate optimization in every step of the goods from transportation from factory to end customer 31. Pay per use business model for robot systems 32. Parallel programming models for ubiquitous services 33. Personalized learning environments for learning computational thinking online 34. Power over Ethernet 35. Proactive IT-security strategies and generic SDNs (Software Designed Networks) 36. Production management and procedure innovations 37. Reduce network latency to milliseconds 38. Reliability, availability, maintainability and safety (RAMS) design for products and production systems 39. Retrofitting ICT in cities and buildings to make us behave smarter in smarter environments 40. Robotics in house building 41. Robot utilization at warehouse order picking 42. Safety improving solutions to the practical level in SMEs 43. Security and reliability of software defined networking 44. Security for billions of ubiquitous and embedded devices 45. Semantic knowledge extraction from unstructured data 46. Smart cities: analysis of hetereogeneous and continuous streams of data 47. Strong Alternative Scenarios - In the EU, research funding is typically based on strongly programmed research calls, which are based on commonly accepted doctrines and assumptions concerning the development of society, technology and economy. This leads to systemic rejection of visions that diverge from these fundamental doctrines as a viable basis for research, and leads to a lack of diversity that seriously hampers the possibilities of Europe to generate viable alternatives to prevailing understandings and to develop truly innovative initiatives. In future EU research programmes there would be thus a great need to strengthen radically the opportunities for new openings that diverge from the preprogrammed visions, and also make sure that the demands for consortia and project forms do not discriminate against insightful seeds of change. 48. Teach networks self-awareness and optimatization skills with AI and Big Data 49. Technologies and services for hyper connected society Critical infrastructures 50. Ubigue and layered cities rendering farms 51. User and consumer oriented service design processes 52. Visualization and exploration of Linked Data 53. Web of Building Data - dynamics, quality and security - the dynamic nature of the data creates needs to manage changes and version histories of the dataset and linksets. Secondly, there are higher coverage and quality requirements for linking: since links are used in real construction workflows or Smart City applications, it is essential that all links have been identified and that there are no incorrect links to confuse the activities. Thirdly, the need to control the access to published datasets creates security-related research topics.

eHealth, mHealth and wellbeing

1. Applications, data mining and miniaturised smart devices for convenient long period health monitoring 2. Building tools and interfaces to enable socially responsible and participatory behavior 3. Develop data-driven approaches to improve health and well-being 4. Personalized diagnostics and care though big data analytics 5. Personalised Health Solutions - Personalised digital health services - Big (Health) data analytics and decision support - Wearable sensors and systems for wellness applications - Technologies for point-of-care diagnostics and self-tests 6. Motivating physical exercise with digital games and augmentation 7. Using ICT to enable preventive and inclusive healthcare and allow autonomy in healthy behavior for everyone 8. Using ICT to support sustainable lifestyles

Total contributors 14 Total contributions 83

Ehdotusten toistuvuuksia ja päällekkäisyyksiä ei ole vielä työstetty.

Criteria for selecting priorities for the next work programme exercise

Delivering on the Europe 2020 objectives of smart, sustainable and inclusive growth depends on research and innovation as key facilitators of social and economic prosperity and of environmental sustainability. Linking EU research and innovation closer to policy objectives sets the framework and specific objectives to which Horizon 2020 research and innovation funding should contribute, such as the Europe 2020 Strategy, the Innovation Union and other flagship initiatives.

With research and innovation being one of the main sources of future growth, the work programme 2016-2017 should thus build on the emerging improved economic situation which allows the EU to build on its competitive advantages to seize new opportunities and create new jobs, besides underpinning key EU policies and objectives. The work programme 2016-2017 should be developed to help the EU capture these opportunities building on the largest single market in the world and a leading position in many fields of knowledge and key technologies. To help focus resources and effort, the focus area approach will be continued. It is expected that some of the existing focus areas will be retained/re-defined, while others will not be continued and new ones introduced.

Besides focus areas, the work programme will also need to address other measures, equally important for economic prosperity: jobs, competitiveness, productivity gains, and overall development of society.

The overarching strategic programming document will in particular contain proposals for the focus areas for the next work programme, while each scoping paper will contain proposals for the priorities to be covered in 2016-2017 on the basis of the inputs received, including how these could then be translated into calls and focus areas.

This paper suggests selection criteria to help identify the areas, including the focus areas, and actions to be rolled-out in the next work programme on the basis of the Specific Programme and building on those areas also supported under the 2014-2015 work programme. The following criteria to be used cumulatively for the selection of priorities are proposed:

  • Maximising EU added value – focusing on areas which cannot be effectively addressed at national level, mobilising resources to build scale and critical mass, improving leverage and synergies with national programmes, aligning with major EU level political initiatives and objectives, contributing to the implementation of EU wide research and innovation agendas;
  • Priority areas addressing and anticipating key trends – like societal change and aging population; ICT and big data; globalisation; productivity developments; resource constraints and environmental concerns; security and sustainability of energy supply; urbanisation, etc. on the basis of available evidence such as foresight and other assessments of research and innovation trends and market opportunities, building on existing research, innovation and business strengths; and identifying areas of high potential for world class scientific, technological and innovative breakthroughs;
  • Providing strong potential for impact and uptake as well as leverage industrial participation – addressing the longer-term competitiveness and prosperity of the EU and the well-being of its citizens and enhancing industrial participation, including small and medium-sized enterprises through clearly defined impacts addressing the demand side, tackling the barriers to innovation and market deployment and uptake, and translating scientific leadership into industrial advantage; around which collaborations should be built between industry, businesses, universities and research institutions, public authorities, etc., to the benefit of society at large;
  • Addressing key novelties and providing genuinely cross-cutting approaches – ensuring the embedding of key novelties such as covering the full research and innovation cycle, social sciences and humanities, gender aspects, climate and sustainable development, etc., and that challenges and areas cutting across different specific objectives and parts of Horizon 2020 are identified and integrated;
  • Improving international cooperation – focusing on key strategic and targeted areas of mutual benefit and providing synergies with international initiatives/projects.

Viestinvälitys EU:n organisaatioissa

Tähän listaan kerätään vaikuttajaverkostoa, joka pystyy vaikuttamaan ICT-työohjelmien sisältöön.

Kommentoi kirjautumatta


Katso myös