Big Data -strategia
Tausta ja kysymys
Liikenne- ja viestintäministeriö asetti 13. joulukuuta 2013 Big datan käyttö -työryhmän. Työryhmän tehtävänä on luoda kokonaiskuva big datasta Suomessa ja laatia luonnos kansalliseksi big data -strategiaksi. Strategia tähtää sellaisten toimenpiteiden löytämiseen, joilla on mahdollista parantaa eri lähteistä saatavan datan tehoksta ja innovatiivista käyttöä. Työryhmä keskittyy muun muassa tietoaineistojen käytettäväksi saamiseen ja big data-osaamiseen, käytön esteiden tunnistamiseen ja käyttöä edistävien toimintamallien kehittämiseen. Lisäksi työryhmän tehtävänä on löytää Suomen kannalta keskeisiä sovellusalueita, joilla on mahdollista hyödyntää big dataa
Työryhmän työn on tarkoitus valmistua 30. kesäkuuta 2014 mennessä. Tämän wikialustan avulla kerätään kommentteja, ideoita ja toimenpide-ehdotuksia kansalliseen big data-strategiaan. Tämä ei ole strategian lopullinen rakenne, vaan luonnoksen avulla pyritään keräämään ideat, tekijät ja toimenpiteet tunnistettuihin aihealueisiin.Kommentteja, ideoita ja ehdotuksia voi lisätä kunkin osion keskustelusivulle (keskustelusivu löytyy wikin vasemmasta yläkulmasta)
Big data-työryhmä LVM:n nettisivuilla ja valtion hankerekisterissä: http://www.lvm.fi/web/hanke/big-data http://www.hare.vn.fi/mHankePerusSelaus.asp?h_iId=20201
Ohjeistusta edellytys- ja sovellusalueista kommentointiin
- kuvausta kyseisestä asiasta, taustatekijästä, sekä sen nykytilasta, esimerkkejä ja perusteluja miksi edellytys tai sovellusalue on meille tärkeä, millaisia vahvuuksia tai heikkouksia Suomella on tässä jne.
Ohjeistusta toimenpideosion kommentointiin
- ideoita toimenpiteiksi, joita otsikkoasian kehittämiseksi tarvitaan (strategian toimenpideosio kootaan myöhemmin näistä)
Ohjeistusta toimijat ja hankkeet-osion kommentointiin
- listausta keskeisistä toimijoista ja hankkeista, jotka strategiassa esitettyjen asioiden eteenpäin viemiseksi ovat olennaisia
Ohjeistusta vaikuttavuus-osion kommentointiin
- ideoita, linkkejä ja tutkimuksia siitä miten big data toimien vaikuttavuutta ja erityisesti tässä strategiassa esitettyjen toimien vaikuttavuutta voisi arvioida määrällisesti ja laadullisesti
Johdanto
Edellytykset:
Sovellusalueet ja niiden potentiaali Suomessa
Terveys
Terveysalalla Suomella on suuri potentiaali big datan suhteen. Suomesta löytyy maailmanlaajuisesti katsoen poikkeuksellisen laadukkaita ja kattavia tietokantoja, muun muassa geenitietoihin liittyen. Näiden vahvuuksien vastuullinen käyttäminen big data-ratkaisuissa voisi tarjota Suomelle merkittävän, globaalin kilpailukykytekijän.
Terveydenhuollon kenttä liittyy big dataan lukuisilla eri tavoilla, ja Suomessa on jo alan osaamista esimerkiksi bioinformatiikan ja molekkyylilääketieteen alalla. Toinen tärkeä linkitys tulee itsenmittausteknologioiden kehityksestä, jossa suomalaisyrityksissä on osaamista kymmenien vuosien ajalta. Terveysdatan laajemman saatavuuden ennustetaan muuttavan ihmisten käsitystä itsestään ja omasta terveydestään. Elämäntavoista ja geenitiedon avulla kertyvän big datan avulla voi ehkä tulevaisuudessa ehkäistä sairastumista. Nykyään terveystietoja voi kerätä esimerkiksi Taltioniin, josta voi tulla tulevaisuudessa tärkeä alusta henkilökohtaiselle big datalle.
Big data mahdollistaa terveydenhuoltoon uudenlaisen oppimisen, kun kerrytetty ja analysoitu data tukee lääkärien ja muun hoitohenkilökunnan työtä. IBM:n kehittämä Watson on yksi esimerkki siitä millaisia käyttöjä big datalle on kehitelty. Kun potilas kertoo oireistaan lääkärille, lääkäri voi samalla kysellä Watsonilta taustatietoja potilaan oireiden perusteella. Watson käy muutamassa sekunnussa tietokannastaan läpi hakusanojen avulla tuhansia oppikirjoja ja satoja tuhansia tieteellisiä artikkeleita.
Big datalta odotetaan terveydenhuollon laadun parantumista ja säästöjä. Data-analyysin odotetaan kehittyvän tavalla, joka auttaa yksittäisen kansalaisen terveysriskien ennustamisessa erilaisten datavirtojen avulla sekä sairauksien ehkäisyssä. On tärkeää, että suomalaiset tuntevat kansainvälisen kentän ja ovat mukana ohjaamassa ajankohtaisia kehityskulkuja.
Terveystietojen hyötykäyttöön liittyy yksityisyyteen, sosiaalisiin ja eettisiin näkökulmiin liittyviä kysymyksiä, jotka on otettava vakavasti. Ilman niitä suotuisat kehityskulut tuskin ovat mahdollisia. Yksi tapa on määritellä vastuullisen aineiston käytön puitteita yhteistyössä eri alojen osaajien kanssa.
Suomessa on muun muassa Sote-uudistuksen myötä oiva tilaisuus pohtia tarkemmin, kokeilla ja ottaa käyttöön big dataan perustuvia ratkaisuja. Dataan perustuvista hoitomenetelmistä ja -käytännöistä on saatu merkittäviä tuloksia. Big dataan perustuvien ratkaisuilla voidaan saavuttaa selviä taloudellisia säästöjä. Nykyisessä taloudellisessa tilanteessa, varsinkin kuntien osalta, säästöjen saavuttaminen uuden teknologian avulla palvelutasoa sinänsä laskematta on avainasemassa.
Erilaisten dataan perustuvien omahoitomenetelmien käyttöönottoa tulee samalla tukea.
Julkishallinto
Suomea viime vuosina koetelleet finanssi- ja pankkikriisit, työn ulkomaille siirtymiseen vaikuttavat globaalin kilpailutilanteen muutokset sekä nopean teknologiakehityksen myötä kiihtyvät liiketoiminnan murrokset perinteisesti työllistäneillä toimialoilla ovat kaikki aikamme globaalitalouden ilmiöitä, jotka asettavat suuria haasteita ja uudistusmisvaatimuksia Suomen jo ennestään ylivelkaantuneelle julkiselle sektorille. Em. globaalien ilmiöiden seuraukset Suomelle ilmenevät mm. vientiteollisuuden paikoittaisena kilpailukyvyn romahtamisena, rakenteellisen työttömyyden kasvamisena ja julkisen talouden kestävyysvajeen syvenemisenä. Edessä oleva suurten suomalaisten ikäluokkien eläköityminen tulee tulevaisuudessa rasittamaan julkisen talouden kustannusrakenteita entisestään.
Suomen virkaa tekevä hallitus on pyrkinyt torjumaan kestävyysvajetta ja tasapainottamaan julkista taloutta mm. rakennepoliittisilla uudistustoimenpiteillä, jotka kohdistuvat moniin eri yhteiskunnan osa-alueisiin kuten esim. terveydenhuoltoon, kuntauudistukseen, työurien pidennykseen, rakenteelliseen ja nuorisotyöttömyyden torjuntaan sekä työ- ja kouluttautumismahdollisuuksien lisäämiseen. Rakenteellisten muutosten mahdollistamien kustannussäästöjen lisäksi tuottavuuden lisääminen niin kustannus- kuin palvelutehokkuutta parantamalla on keskeisiä julkisen sektorin tavoitteita.
Big Data ajattelutapana (kts. Datatietoisuus) ja teknologiana antaa omalta osaltaan uudenlaisia näkökulmia hallinnolle edistää tuottavamman yhteiskunnan ja kestävyysvajeen torjumisen strategisia päätavoiteita, lisäten samalla kansalaisten tyytyväisyyttä julkisiin palveluihin. Big Datan avulla on mahdollista realisoida tuottavuushyötyjä useimmilla hallinnon alueilla. Datalähtöisempää julkishallintoa voidaan yleisesti tarkastella esim. kolmessa seuraavassa osa-alueessa: Datalähtöisen päätöksenteon ja jatkuvan organisaatiokehityksen tuominen osaksi julkishallinnon kulttuuria, kansalaisten henkilökohtaisemmat palvelut sekä yritysten ja kansalaisten parempi osallistaminen mm. julkisten palveluiden kehitykseen (kts. Osallistaminen) Lisäksi Big Datan hyödyntämistä tulee tarkastella eri hallinnonaloille kohdistettavissa olevien yksittäisten Big Data-käyttötapausten kautta.
Big Datan tuottavuusparannuksista julkishallintoon on haastavaa esittää tarkkoja arvioita ilman täsmällisempää analyysiä, mutta McKinsey arvioi vuoden 2011 raportissaan Euroopan julkishallintojen kykenevän Big Dataa hyödyntämällä vähentämään hallinnollisia kulujaan n. 15-20 prosenttia ja lisäämään 0,5 prosentin vuotuisen parannuksen tuottavuuteen. (McKinsey Global Institute, 2011, Big data: The next frontier for innovation, competition, and productivity)
Tavoitteena data- ja asiakaslähtöisempi organisaatiokulttuuri
Datalähtöinen organisaatiokulttuuri edellyttää, että julkishallinto pyrkii tietoisesti ja jatkuvasti omaksumaan maailmalla parhaiten toimiviksi todettuja käytäntöjä tiedolla johtamisessa, organisaatioiden kehittämisprosesseissa (esim. lean-prosessit), organisaation tavoitteisiin sidotussa suorituskykymittauksessa sekä dataan perustuvan päätöksenteossa. Datalähtöisessä julkishallinnossa organisaatiot, niin pienet kuin suuremmat yksiköt, määrittelevät omaa missiotaan ja tavoitteitaan tukevat, selkeästi ymmärrettävät ja läpinäkyvät datalähtöiset suorituskykymittarit. Kansainvälisestikin vertailukelpoisesti valitut mittarit ohjaavat organisaatioita tekemään ohjattuja päätöksiä, jotka palvelevat mahdollisimman tehokkaasti organisaation oman mission ja kansalaisten palvelutulosten toteutumista. Datalähtöistä päätöksentekoa tukevat Big Data-järjestelmät mahdollistavat päätöksenteon tavalla, jossa tekeillä olevien päätösten hyötyjä, kustannuksia ja pitkän tähtäimen vaikutuksia on mahdollista ymmärtää ja simuloida ennen päätösten varsinaista toimeenpanemista. Big Datalla on tärkeä merkitys entistä edistyneempien ja ennakoivempien mittareiden mahdollistamisessa, samoin kuin laadukkaiden mittarien edellyttämän hienojakoisten signaalien löytämisessä organisaatioiden suurista tietomassoista. Muutos datalähtöiseksi organisaatioksi on kokonaisvaltainen, joskin eri kypsyysvaiheessa olevat organisaatiot toki ottavat askeleita tavoitteisiin vaiheittain. Datan avaamisesta, laadun varmistamisesta, tiedonhallinnan roolien, prosessien ja vähimmäisarkkitehtuurikyvyyksien luomisesta edetään tietoisesti kohti omaa toimintaansa mittaavaa ja optimoivaa organisaatiota. Lopulta oleellista on valita organisaation suorituskykyä kuvaavat korkean tason suoriutuskykymittarit siten, että ne voidaan ymmärrettävästi ja läpinäkyvästi linkittää organisaation mission ja tavoitteiden toteutumiseen ja näitä edistäviin käytännön toimenpiteisiin. Mittareiden pohjana olevien oletusten, käsittelysääntöjen ja lopulta itse datan läpinäkyvyys kansalaisille toimii omalta omaltaan takeena valittavien mittareiden luotettavuudelle ja ”peukaloimattomuudelle”. Julkisten toimijoiden tärkeimmät korkean tason suorituskykymittarit kohdistuvatkin yleensä lopulta toimijoiden palvelemiin ”ulkoisiin asiakkaisiin” – eli kansalaisiin ja heidän palvelukokemukseensa, mikä tilivelvoittaa hallintoa jatkuvasti parantamaan kansalaisille tarjoamaansa palvelua. Yleisiä, koko Suomea koskevia taloudellisia ja yhteiskunnallisia korkean tason mittareita ylläpitää esim. Findikaattori (www.findikaattori.fi ).
Ranskan datalähtöinen hallintoreformi Esimerkkinä julkishallinnon mission asiakaslähtöistämisestä voidaan pitää Ranskan massiivista finanssikriisin jälkeistä hallintoreformia, jonka säästötavoite vuoden 2009-2013 aikana oli 15 miljardia euroa ja leikkaustarve yli 150 000 julkisen sektorin tehtävää. Kustannusäästöjen lisäksi tavoitteena oli palvelun laadun radikaali parantaminen. Reformia valmistellessa kansalaisilta ja yrityksiltä pyydettiin yksinkertaista pisteytysarviota koskien yhteensä 50 erilaista kansalaisten ja julkishallinnon välistä ”elämänaikaista tapahtumaa” sekä vastaavasti 30 erilaista yritysten ja julkishallinnon välistä ”yritysten elinkaarenaikaista tapahtumaa”. Esimerkkeinä kansalaisia koskevista tapahtumista olivat esim. ”avioliiton solmiminen” ja yrityksiä koskevista interaktioista esim. ”uuden yrityksen perustaminen”. Reformin alussa kansalaiset ja yritykset arvioivat kunkin julkishallintoon suuntautuvan interaktionsa koettua monimutkaisuutta arvoilla ”yksinkertainen”, ”OK”, ”monimutkainen ”, ”erittäin monimutkainen”. Varustettuna näillä alustavilla kansalais- ja yritysnäkökulmilla julkisen asioinnin havaitusta monimutkaisuudesta, tuli kyseisiä asiointiprosesseja hallinnoivien yksiköiden uudeksi ja ainoaksi asiakaslähtöiseksi missioksi uudistaa koko toimintansa siten, että kansalaisten ja yritysten monimutkaiseksi kokemat ”elämän tapahtumat” saadaan mahdollisimman nopeasti muutettua mahdollisimman yksinkertaiseksi. Reformin valmistuttua kyselyn tulokset osoittivat julkisen asioinnin havaitun monimutkaisuuden pudonneen (eli koetun palvelun laadun lisääntyneen) 20 prosenttia kansalaisten tapauksessa ja 25 prosenttia yritysten tapauksessa. http://www.mckinsey.com/insights/public_sector/transforming_government_in_france
Suorituskykykyä vertailemalla parhaita käytäntöjä
Julkishallinnon yksiköiden oman päätöksenteon tehostamisen lisäksi datalähtöisellä mittaamisella on erittäin tärkeä merkitys julkisten yksiköiden keskinäisessä suorituskykyvertailussa (benchmarking), joka tarjoaa julkisen toimijan ulospäin läpinäkyvän suorituskykyinformaation lisäksi yksikölle itselleen vahvan sisäisen insentiivin ja lähtökohdan kehittää omaa suorituskykyään edelleen. Suorituskykyvertailun keskeisenä oivalluksena on se, että näennäisesti erilliset julkiset toimijat voivat olla missioltaan, perusprosseiltaan tai esim. rakenteeltaan hyvinkin samankaltaisia. Nämä keskinäiseen vertailuun soveltuvat yksiköt voivat olla esim. eri henkilökunnan tai tahon toimesta johdettuja sisaryksiköitä samassa julkisessa emo-organisaatiossa tai hallinnonalassa mutta aivan yhtä hyvin verrokkiorganisaatiot voivat olla kokonaan erillisiä julkisia toimijoita tai yksityisiä yrityksiä Suomesta tai muualta maailmasta. Kun julkiset toimijat ja yritykset eri puolilla Suomea ja maailmaa mittaavat omaa suorituskykyään lisääntyvässä määrin keskenään vertailukelpoisella standardimittaristolla, voivat tietyllä osa-alueella muihin nähden alisuorittavat julkishallinnon yksiköt oppia, omaksua tai parhaassa tapauksessa suoraan kopioida parhaita suorituskyvyn tehostamiskäytäntöjä niiltä verrokkiyksiköiltä, jotka ovat kyseisellä osa-alueella kansainvälistä huippua.
Verokarhulle tehoa datalähtöisellä benchmarkkauksella Esimerkkinä suorituskykyvertailusta on tutkimus, jossa yhteensä 13 maan verohallintoa verrattiin toisiinsa erilaisilla verohallinnollisilla osa-alueilla (esim. verotietoja koskevat rutiinitoimenpiteet, ei-ilmoitettuihin tietoihin liittyvät auditoinnit, tehostettu proaktiivinen veronkeruu, monikanavainen asiakaspalvelu). Tiivistäen, tutkimus osoitti että yksikään verohallinnoista ei ollut paras kaikilla osa-alueilla eli kaikilla oli opittavaa toisiltaan suorituskyvyn parantamisessa. Lisäksi tutkimus osoitti, että 13 verohallintoa yhdessä voisivat kerätä 86 miljardia euroa lisää suorina veroina ja säästää 6 miljardia kuluissa, mikäli kaikki verohallinnot toteuttaisivat veronkeruun yhtä hyvin kuin paras kolmasosa. (Thomas Dohrmann and Gary Pinshaw, ”The road to improved compliance: A McKinsey benchmarking study of tax administrations 2008-2009) http://www.mckinsey.com/client_service/public_sector/expertise/public_finance
Edellä esitetyt datalähtöisemmän organisaatio- ja päätöksentekokulttuurin luominen sekä suorituskyvyn jatkuva parantaminen ovat tärkeitä askeleita kohti huomispäivän tuottavampaa ja sitä kautta kestävämpää julkishallintoa. Datalähtöisen kulttuurin voivat saada toimimaan ainoastaan julkishallinnossa työskentelevät ja työnsä merkityksellisyydestä motivoituneet ihmiset, jotka sekä ymmärtävät oman työnsä perimmäisen palvelutarkoituksen ja jotka ovat valmiita datalähtöisyyden edellyttämään asennemuutokseen. Ihmisten kouluttaminen, motivoiminen ja vastuuttaminen tähän uuteen organisaatiokulttuuriin on suuri haaste ja muutos, jota on lähestyttävä kokonaisvaltaisesti pelkkien inkrementaalisten organisaatiomuutosten sijaan. Datalähtöisen muutoksen käynnistäjiksi ja suunnannäyttäjiksi tarvitaankin kokeneita ja vastuutettuja tiedolla johtamisen pioneereja, joilla on vahvan datalähtöisen näkemyksen lisäksi kyky motivoida ihmisiä ja organisaatioita pitkäjänteisesti.
Kansalaisille yksilöllisempää julkista palvelua
Eräs julkishallinnon kestotavoitteista on tarjota kustannus- ja palvelutehokkaampia palveluita kansalaisilleen eli säästää nykyisten palveluiden kustannuksissa ja/tai parantaa palveluiden vaikuttavuutta kustannusrakenne säilyttäen. Keskeinen keino parantaa palvelun vaikuttavuutta ja kansalaistyytyväisyyttä on segmentoida kansalaiset Big Datan tarjoamin menetelmin ja siten tarjota heille henkilökohtaisempaa palvelua. Datalähtöisemmät palvelut vievät myös kansalaisten kokeman loppukäyttäjäkokemuksen seuraavalle tasolle. Sen perusteella millainen kansalainen on, missä kansalainen on, mitä kommunikointivälinettä hän käyttää ja mitä hän on parhaillaan tekemässä, voi älykäs palvelu ehdottaa kansalaiselle ”päätöksiä” siitä, mitä hänen mahdollisesti tai luultavasti kannattaisi tehdä seuraavaksi. Kansalaisen tehtäväksi jää sitten tyypillisesti ja minimissään annettujen datalähtöisten ehdotusten hyväksyminen, tarvittaessa myös käyttäjälle päätöksen yhteydessä annettujen tarkempien perustelujen tai toimintasuositusten pohjalta. Henkilökohtaisemmat ja päätöksentekoa helpottavat käytettävät palvelut parantavat automaattisesti kansalaisten tyytyväisyyttä ja luottamusta julkishallintoon.
Saksassa työvoimahallinto löytää big datalla töitä Esimerkkinä suuren mittakaavan kansalaisten analyyttisestä segmentoinnista ja julkishallinnon personoidusta asiakaspalvelusta on Saksan valtiollinen työllisyysvirasto Bundesagentur fur Arbeit (BA), jonka päätehtävänä on integroida työnhakijat mahdollisimman nopeasti takaisin työvoimaan ja omalta osaltaan tehostaa yritysten rekrytointiprosesseja. Segmentoimalla tarkasti tarjolla olevat työtehtävät ja työntekijät sekä räätälöimällä yksilöllisesti mm. työnhaun edistämiseen tarkoitetut neuvontapalvelut, BA on saanut aikaan merkittäviä tuloksia. Vuodesta 2006 vuoteen 2011 BA:n asiakkaan keskimääräinen työttämänäoloaika putosi 162 päivästä 136 päivään, työttömien määrä putosi 4,5 miljoonasta 2,9 miljoonaan ja BA:n kautta työllistyneiden määrä (per vuosi) kasvoi 240 000 ihmisestä 510 000 ihmiseen. Myös BA:n asiakastyytyväisyys niin työntekijöiden kuin työnantajien puolella parantui huomattavasti kyseisenä aikana. (McKinsey Interview 2013, Frank Jurgen Weise, Behind the German jobs miracle. http://www.mckinsey.com/features/government_designed_for_new_times/table_of_contents )
Laadukkaiden palveluiden tulee lisäksi kaikin tavoin säästää kansalaisten aikaa, esim. kaikki kansalaisille näkyvät hakemus- ja tiedonsyöttöprosessit tulisi automatisoida byrokratian ja käsittelyvirheiden vähentämiseksi. Kansalaisille on oltava mahdollisuus itse päivittää esim. kaikkia julkiseen asiointiinsa liittyviä, valmiiksi esitäytettyjä henkilö- ja hakemustietojaan. Riippumatta mikä taho julkiset digitaaliset palvelut varsinaisesti teknisesti rakentaa, tulee kaikkien palveluiden tukea helposti saatavissa olevaa reaaliaikaista palautetta niiden käytöstä, niin kansalaisten antaman eksplisiittisen yhteisöllisen palautteen kautta kuin palvelun varsinaiseen käyttöön perustuvaan analytiikan muodossa. Käytöstä kerättyä palautetta voidaan jälkeen päin analysoida niin palvelun käytettävyyden kuin varsinaisen julkisen asioinnin kehittämisen kannalta.
Julkishallinnon mahdollisia Big Data-käyttötapauksia Julkishallinnolla on suuria määriä dataa, tyypillisesti rakenteisessa teksti- ja numeromuodossa. Julkishallinnon tuottavuutta voidaan parantaa yksittäisillä ja kustannussäästöjä teknisillä Big Data-ratkaisuilla, jotka on kohdistettavissa julkishallinnon eri hallinnonalojen ja yksiköiden täsmällisiin tietojenkäsittelyllisiin ongelmiin. Hyödynnettäessä Big Dataa julkishallinnossa, on teknisiä IT-ratkaisuja huomattavasti tärkeämpää saada aikaan datalähtöisyyden edellyttämä asennemuutos julkishallinnon ihmisissä ja työskentelytavoissa ja sitä kautta luoda jatkuvaan mittaamiseen ja hallinnon parantamiseen liittyvä datalähtöinen organisaatiokulttuuri. Alla on lueteltu mahdollisia sovelluskohteita Big Data –ratkaisuille: Työvoima ja kouluttautuminen *Koulutustarjonta-, työtarjonta- ja työvoimatarjontatietovarantojen yhdistäminen ja analyyttinen segmentointi työttömän työvoiman mahdollisimman nopeaksi ja tarkaksi kohdistamiseksi tarjolla oleviin ja työttömille hakijoille yksilöllisesti soveltuviin työ- ja jatkokouluttautumistilaisuuksiin. Tällä voidaan omalta osaltaan tukea hallituksen tavoitteita nuorisotyöttömyyden torjumisessa, työurien pidentämisessä, ammatillisen koulutuksen tarjoamisessa, välityömarkkinoissa sekä työtarjousten lisäämisessä (ja niiden tiukennetusta vastaanottovelvollisuudesta). Sosiaalietuuksien ja –tukien väärinkäytön data-analyyttinen ennakoiminen ja tukihakemusten/päätösten käsittelyn nopeuttaminen *Tarjotun työn ja sen vastaanottamisen tarpeen perusteleminen data-analyyttisesti tarjotusta työstä kieltäytymisen vähentämiseksi *Education to Employment (E2E) parhaiden käytäntöjen soveltaminen yhdessä yritysten kanssa, mm. kasvan teknologiatyöttömyyden suunnan ennakoimiseksi *Yleisesti työllisyyteen liittyvien koulutus- ja osaamistarpeiden tilannekuvaseuranta ja työvoimapoliittisten strategioiden paremmaksi ennakoimiseksi Harmaan talouden ja kansainvälisen veronkierron torjunta *Tehostettu petosten ja virheiden havainnointi Big Data-ratkaisuilla osaksi harmaan talouden torjuntaohjelmaa *Kovaan dataan perustuvien veroanalyysien täydentäminen esim. sosiaalisen median pehmeämmällä datalla Hallituksen kestävän kehityksen mittarit *Yhteiskunnalliseen kestävyyteen liittyvät Big Data-mittarit ja niiden kansalaisystävällinen seuranta *Ympäristön kestävyyteen liittyvät Big Data-mittarit ja niiden kansalaisystävällinen seuranta Kansalaisille avoimempi ja ymmärrettävämpi kuva valtiontalouden tilasta *Kansantalouden data-analyyttinen "simulaattori” palvelemaan yksityisten, julkisten tahojen ja yksittäisten kansalaisten tekemiä tutkimuksia koskien valtiontalouden tilaa *Valtion rahoitusvirtojen ihmisystävällisemmät visualisoinnit avoimen datan pohjalta, esim. oman äänestyspäätöksen helpottamiseksi *Muut taloudelliseen kestävyyteen liittyvät Big Data-mittarit ja niiden kansalaisystävällinen ja -motivoiva seuranta
Älykkäät verkot
TULOSSA
Tutkimus
Big data-kehitys tarjoaa tutkimukselle huomattavia mahdollisuuksia. Esimerkiksi uusien, dataan perustuvien tutkimusmenetelmien kehitys tuo lähes alan kuin alan tutkijoille huomattavasti parempia mahdollisuuksia tutkia erilaisia asioita ja toisaalta löytää ongelmiin myös vastauksia. Muun muassa erilaisen mobiilidatan, trendidatan sekä sosiaalisesta mediasta saatavan datan määrän kasvu tuo tutkijoiden ulottuville aivan uudenlaisia aineistoja.
Menetelmäkehityksen lisäksi tärkeää on muistaa niiden hyödyntämisessä muun muassa monitieteisyys. Esimerkiksi erilaisiin yhteiskunnallisiin ongelmiin voidaan hakea vastauksia uusien menetelmien avulla. Tämä vaatii eri tieteenalat ylittävää työskentelyä, muun muassa matemaatikkojen, ohjelmoijien ja yhteiskuntatieteilijöiden kesken. Erilaiset laitos- ja tieteenalarajat eivät saa estää uusien menetelmien sekä mahdollisuuksien täysimääräistä käyttöä. Yliopistojen tulisi olla valmiita muun muassa erilaisten monialaisten tutkimustiimien tukemiseen.
Liikenne
Liikenteen alalla datan räjähdysmäinen lisääntyminen ja big data-ratkaisut tarjoavat selkeitä mahdollisuuksia. Erilaisilla ratkaisuilla tavoitellaan muun muassa liikenneturvallisuuden parantumista ja liikenteen tehostumista sekä liikenteen ekologisuutta. Ratkaisut voivat liittyä muun muassa liikenteen ohjausjärjestelmiin, logistiikan optimointiin sekä erilaisiin reittipalveluihin.
Suomella on mahdollisuus profiloitua liikenteen kokeiluympäristönä (LVM: älyliikenne ja liikenteen sähköiset palvelut http://www.lvm.fi/web/hanke/liikenteen-sahkoiset-palvelut, http://www.lvm.fi/alyliikenne ). Tätä puoltaa muun muassa Suomen suhteellisen pienimuotoinen liikenne, jolloin pienempiä kokeiluja voidaan hyvin tehdä. Suomessa tehdään myös alan tutkimusta ja ylipäänsä ollaan maailmassa kärkijoukossa esimerkiksi avoimen liikennedatan käytön suhteen. Suomessa on myös tehty tutkimusta uudenlaisista liikennejärjestelmistä.
Parhaimmillaan erilaiset liikenteeseen liittyvät big data-innovaatiot(esim. liikenneanalyysi ja -ennusteet) voivat olla merkittäviä vientituotteita.Erilaista tutkimus- ja innovaatiotukea sekä muuta rahoitusta on liikenteen alalla saatavissa suhteellisen runsaasti. Näin ollen mahdollisuus merkittävään toimintaan on olemassa.
Teollinen internet
Huolto ja ennakoivat etäpalvelut ovat yksi osa-alue laajemmassa kokonaisuudessa, josta usein käytetään termiä Teollinen Internet (TI). Tällä tarkoitetaan sulautettujen ja älykkäiden laitteiden ja järjestelmien, niistä jatkuvasti kertyvän datan ja siihen pohjautuvan data-analytiikan sekä ihmisten työn tehokasta yhdistämistä liiketoimintaprosesseissa. Tämä mahdollistaa sen, että tuotanto- ja muut resurssit, tieto, esineet ja ihmiset muodostavat reaaliaikaisesti verkottuneen kokonaisuuden.
Sovellusalueita ovat mm. valmistavan teollisuuden prosessit ja niiden optimointi, ennakoiva huolto, energian käytön hallinta, käyttöomaisuuden hallinta ja ennakoiva huolto. Vähintään yhtä suuret hyödyntämismahdollisuudet ovat myös varsinaisen teollisuuden ulkopuolisessa elinkeinolämässä, kuten esim. terveydenhuollossa, kaupan ja logistiikan alueella, rakentamisessa ja kiinteistöjen hoidossa sekä kunnnallisten ja muiden julkisten palvelujen tuottamisessa (energia, vesi, jätevesi...). Yhteistä kaikille sovellusalueille on se, että tavalla tai toisella on olemassa automatisoitu linkki fyysisen maailman ja digitaalisen maailman välillä. Usein tuo linkki syntyy joukosta antureita tai tägejä, joilla voidaan saada tietoa esineiden tai ihmisten tilasta, olinpaikasta ja muista tekijöistä. Kun tätä tietoa yhdistetään ja analysoidaan yhdessä kertyneen historiatiedon sekä muiden tietovarantojen kanssa, voidaan tehostaa merkittävästi nykyisiä toimintatapoja ja -prosesseja sekä luoda myös aivan uusia palveluja ja liiketoimintaa. Alan uusissa palveluissa on myös huomattava vientipotentiaali. Toisaalta esimerkiksi etähuoltoratkaisujen avulla voidaan pitää ja saada lisää korkean jalostusarvon työpaikkoja Suomeen.
GE:n valmistamista lentokoneturbiineista kerätään päivässä huimia datamääriä. Yksi turbiinin sensori kerää päivässä noin 500 gigaa dataa. Yhdessä turbiinissa taas on 20 sensoria ja GE:llä on noin 12 000 turbiinia. http://sites.tcs.com/big-data-study/ge-big-data-case-study/ http://www.lopezresearch.com/2013/06/04/the-new-industrial-revolution-according-to-ge-and-ptc/
Suomella olisi mahdollisuuksia muun muassa palveluliiketoiminnan synnyttämisessä teollisen internetin avustuksella ja -ympärille. Palvelu ja huolto yhdistettynä etähuoltoon, automatisointiin, ennakoivaan huoltoon. Merkittävä osa ongelmanratkaisuista ja korjauksista voidaan automatisoida. Tämä toiminta sopii eri teollisuusalueille: Metalliteollisuus, konepajat (esim. Konecranes), tietoliikenne. Kaikki vähänkin arvokkaammat laitteet tai toiminnallisuudet pystyvät itse analysointiin ja ne voidaan testata/analysoida/korjata etäältä. Usein vikaantuminen voidaan jo ennakoida. Tällä toiminnan optimoinnilla saadaan merkittäviä säästöjä ja kompetenssi siirretään halpatyösuunnasta korkeamman kompetenssin vaatimuksiin.
Eri toimialoilla samoja tai samantapaisia tarpeita. Teollisen internetin kehityksen hyödyntäminen vaatii osaamista ja kombinaatiota erilaisista asioista. Näihin lukeutuvat muun muassa kompetenssi, anturien kehitys, etäyhteyksien parantuminen sekä Big Data analytiikka. Haasteena teollisen internetin kehityksessä Suomessa on muun muassa se, että kovin laajamittaista hyödyntämistä
Suomessa on alaa silmällä pitäen hyvä koulutustaso ja kompetenssi, jokseenkin osaajapula voi ainakin big data-osaajien kohdalla uhata tulevaisuudesa. Myö toimintaa ja intressi on jo osittain olemassa. Etäinen sijainti päämarkkinoilta ja päämyyntialueilta on Suomelle luonnollisista. Tämä tarjoaa tietyssä mielessä otollisen . Sopivia teollisuusaloja, joihin big data-lähtöinen palveluliiketoiminta on sovellettavissa, ovat muun muassa metalli-, kone- sekä tietoliikenneteollisuus. Kaikilla näillä on perinteisesti ollut Suomessa tärkeä rooli viennin kannalta. Toisaalta nämä alat ovat osittain olleet kriisissä ja vaativat uudistumista. Big dataan perustuvat ratkaisut ovat avainasemassa kansainvälisessä kilpailussa mukana pysymiselle.
Cleantech
Big data liitettynä cleantech-osaamiseemme mahdollistaa uusia innovointi- ja vientimahdollisuuksia mm. jättimäisille ja kasvaville Aasian markkinoille. Suuri osa Cleantech- ratkaisuista perustuu kerääntyvän digitaalisen tiedon parempaan hyödyntämiseen ja toiminnan optimointiin tämän pohjalta. Erilaisilla big data-ratkaisuilla onkin Cleantech-kehityksen kannalta oleellinen rooli.
Cleantechin yleinen merkitys on vahvassa kasvussa resurssiniukassa maailmassa, ei välttämättä aina omana ympäristötekniikan alanaan vaan kaikkeen muuhun liiketoimintaan sulautettuna.
Myös Cleantech-kehitystä silmälläpitäen tarvitaan uusi platform-ajattelua hyödyntävä yhteistyön malli, jolla pienet yritykset voisivat suoraviivaisemmin toimia toimia isojen teollisuusyritysten innovaatiopartnereina ja sitä kauttaa tuottaa runsaasti ja tehokkaasti yksinkertaisia konsepteja/palveluita suuryritysten teknologian (alustat, laitteet) tai datan ympärille
Nopean kansainvälistymisen haasteet käännettävä vahvuuksiksi uusilla vientikelpoisilla innovaatioilla ja palveluilla. Cleantechin innovoinnista ja vahvuuksista huolimatta Suomella ei välttämättä juurikaan ole alueelta omia, kansainvälisesti tunnistettuja kotimaisia käyttöreferenssejä. Ratkaisuja täytyisi siis kokeilla rohkeasti ensin myös kotimaassa. Osittain haasteena ovat myös teollisen internetin standardien ja osin teknologioiden kypsymättömyys, vaikka tulevaisuuden potentiaalia on paljon. Cleantech kulkee siis käsi kädessä teollisen internetin kehityksen kanssa.
Cleantech on yksi työ- ja elinkeinoministeriön nimeämistä kasvun kärjistä.Valtioneuvoston periaatepäätös kasvun uusien kärkien cleantechin ja biotalouden vauhdittamisesta. https://www.tem.fi/files/39772/VNP_kasvun_karjet_cleantech_ja_biotalous_08052014.pdf
Markkinointi ja mainonta
Gartnerin mukaan 50% Big Dataan käytettävistä investoinneista menee markkinointiin. Markkinointi on muuttumassa teknologiavetoiseksi. Gartnerin mukaan Chief Marketing Officerit käyttävät vuonna 2017 enemmän rahaa IT:hen kuin Chief Information Officerit.
Big Datan tyypillisimmät käyttötapaukset markkinoinnin ja mainonnan alueella liittyvät kuluttajakokemuksen parantamiseen, sisällön personointiin ja viestinnän kohdentamiseen.
Big Datalla on suuri rooli muun muassa seuraavissa markkinoinnin ja mainonnan aloissa: * Consumer Experience Management * Real-time Bidding * native advertising * mobile & video advertising * location-based advertising * micro-targeting * real-time personalization
Läpileikkaavia teemoja
Mydata
My Data viittaa toimintakulttuuriin, jossa organisaatio palauttaa keräämäänsä yksilökohtaista tietoa ihmiselle itselleen. Sen jälkeen ihminen voi hyödyntää sitä suoraan tai jakaa sen edelleen haluamallaan tavalla. Edelleen jaettu tieto voi olla analysoimatonta raakadataa tai se voidaan jalostaa esimerkiksi visualisoimalla muotoon, jossa muut voivat sitä hyödyntää.
My Data -näkökulmat ovat tärkeitä big dataan liittyvissä keskusteluissa, koska niiden avulla voi purkaa big dataan ja yksityisyyteen liittyviä uhkia. My Data -aloitteiden päämääränä on ollut henkilöitä koskevan tiedon ympärille syntyvien sovellusten, palveluiden ja toimintarakenteiden kehitys tavalla, jossa ihmisillä on keskeinen päätösvalta tiedon keräämisen, jalostamisen ja hyödyntämisen suhteen. My Data -aloittesiin liittyvä keskustelu yksityisyydestä korostaa ihmisten valtaa päättää siitä, kuka heidän tietojaan saa käyttää ja uusiokäyttää sen sijaan, että ihmiset antavat kerralla suostumuksen aineistojen käyttöön. Digitaalisuuteen liittyy nimenomaan mahdollisuus monistaa ja käyttää tietoa yhä uudelleen, jolloin ihminen ei suostumustaan antaessaan voi tietää tai hallita tulevaisuuden käyttötarkoituksia.
Onnistunut My Data -työskentely edellyttää, että yhteisistä henkilökohtaisiin aineistoihin liittyvistä periaatteista pystytään sopimaan. Tarvitaan viisasta sääntelyä, jonka avulla aineistojen jakaminen on mahdollista. Tarvitaan koneluettavia rajapintoja aineistojen jakamisen tueksi, standardeja ja palveluita tiedon hallittuun siirtämiseen, varastointiin, käsittelyyn ja analysointiin. Nämä pyrkimykset tukevat myös big datan hyötykäyttöä tulevaisuudessa.
Quantified self
Quantified Self –liikkeen juuret ovat Kaliforniassa ja erityisesti Wired-lehden ympärillä. Liikkeen keskeisenä ajatuksena on yksilöllisen mittaustiedon hyötykäyttö terveyden ja hyvinvoinnin edistämisessä. Viime vuosien aikana liike on levinnyt eri puolille maailmaa, ja saanut uusia muotoja. Kyse ei ole enää yksinomaan superterveydestä haaveilevien teknointoilijoiden liike vaan mittaamista istutetaan yhä uusille elämänalueille. Big data ja QS –näkökulmilla on paljon yhteistä, koska QS on yksi mahdollinen big datan tuottaja. Digitaalisten itsenmittausaineistojen arkistointiin tarvitaan uusia ratkaisuja. Tiedon hallinta on turvattu, kun yksilö omistaa tietonsa ja antaa sille käyttöoikeuden halutessaan. Kun itsenmittaajat haluavat jakaa aineistoja myös muille, tiedon käyttö on turvattava tavalla, joka hyödyttää sekä tiedon jakajaa että hyödyntäjää.
Itsenmittauksen ympärillä on paljon uusia aloitteita, joita motivoi myös terveydenhuollon toimialamuutos. Suomessa itsemittausteknologioita kehittäneitä, kansainvälisillä markkinoilla toimivia yrityksiä on useita, muun muassa Firstbeat, Suunto ja Polar. Lisäksi alalla on lukuisia lupaavia start up -yrityksiä. Mittalaitteiden avulla ihmiset saavat uudenlaista tietoa itsestään. Itsehoito on aiempaa helpompaa, kun ihmiset voivat mitata kotona verenpainettaan tai seurata unen laatuaan. Tämä voi muuttaa vähitellen terveydenhuollon painopistettä ja lääkärien työtä. Lääkärit voivat keskittyä tiukemmin nimenomaan erikoistuneeseen sairauksien hoitoon, kun sairauksien ennaltaehkäisyyn on uudenlaisia vaihtoehtoja.
Toisaalta QS haastaa myös käsityksiä terveydenhallinnasta ylittämällä olemassa olevan terveystoimialan. Itsenmittaajat ovat osoittaneet, että esimerkiksi ajankäyttödata voi olla terveysdataa. Esimerkiksi riippuvuuksia voi tarkastella ajankäytön avulla. Kiinnostavaa on myös terveydentila suhteessa ympäristöntilaan. Voiko ilmanlaatusta ennakoida tulevaisuudessa keuhkoahtaumapotilaan kohtauksen?
QS-näkökulma on alkanut levitä myös muille toimialoille, esimerkiksi oman talouden hallintaan tai koulutukseen. Mittatietoa voi käyttää esimerkiksi omaehtoisen oppimisen seurantaan tai tekemään näkyväksi opettajien pärjäämistä eri luokkien kanssa.
Tiedon etsintä
Tietomäärien valtava lisääntyminen luo päivittäisiin työtehtäviin lisähaasteita myös kaikille tietotyöntekijöille. Esimerkiksi tiedonetsintä on alue, jota paremmin tukemalla voidaan saavuttaa merkittäviä kustannussäästöjä. Erilaisille tietotulvaa helpottaville työkaluille ja mm. etsintämentelmille on monkansallisten jättien hallitsevasta asemasta huolimatta vielä kysyntää esimerkiksi tutkimuksen parissa. Tietotyö sinällään lisääntyy jatkuvasti, joten erilaisiin tarpeisiin räätälöidyllä, erilaisen tiedon etsintää helpottavia työkaluja tarvitaan monilla aloilla.Suomessa tehdään merkittävää alaan liittyvää tutkimusta.
Alalta voi oikeilla panostuksilla löytyä hyvin erilaisia hyötyjä. Tietyn alan työhön kuuluva tietotulvan hallinta ei välttämättä onnistu vielä nykyisillä työkaluilla. Uusilla tiedonhakumenetelmillä, esimerkiksi vuorovaikuttaisesti oppivan visuaalisen järjestelmän, avulla voidaan löytää relevantimpaa tietoa helpommin ja nopeammin. Näin työn laatu ja tehokkuus paranee.
SCINET tekee parempia hakuja HIITissä on kehitetty SCINET-tiedonhakujärjestelmä, joka on testeissä todettu Google Scholaria tehokkaammaksi. SCINET hakee tällä hetkellä tieteellisiä artikkeleita. Konseptia ollaan kuitenkin laajentamassa myös muunlaiseen tiedonhakuun.http://www.tiede.fi/artikkeli/uutiset/suomalaistutkijat_tekivat_uudenlaisen_hakukoneen. http://research.ics.aalto.fi/mi/online-papers/Ruotsalo13cikm.pdf
Suomessa on erittäin korkealaatuista ja monitieteellistä tutkimusta alueella (HIIT:istä 7 tutkimusryhmää ja Työterveyslaitoksen Aivot työssä -tutkimusryhmä, www.reknow.fi / Tietotyön vallankumous). Panostuksia alalle olisi saatavissa: Tietotyön vallankumous on TEKESin toinen strateginen tutkimusavaus syksyllä 2013.
Paikka/lokaatiotieto
TULOSSA
Toimenpiteet
Yhteistyö eri alojen välillä
Yleisesti jaetaan näkemys tarpeesta hakea datan avulla synergioita eri aloilta. Pilvipalvelujen hyödyntäminen on tässä olennaista, sillä se mahdollistaa uudenlaisen datan yhdistelyn ja jakamisen. Löydettävä siten toimia, joilla erityisesti yritysten horisontaalista ja vertikaalista verkottumista voidaan edesauttaa siten, että (big ja avointa) dataa jaettaisiin sopivalla alustalla/rajapinnoilla yhteiseen käyttöön ja yhdisteltäväksi uudella tavalla.
Yrityksillä (erityisesti suurilla) on hyödyntämätöntä dataa, mutta ei osaamista/resursseja/ideaa käyttää tätä. Vaatii toimien suuntaaminen: 1. kannustetaan/tuetaan yrityksiä avaamaan rajapintoja dataansa 2. yhteiset kehitysalustat datan jakamiseksi, joista jalostuu uusia lisäarvopalveluja
Haasteena nähdään se, ettei yrityksillä ole välttämättä kannusteita tai liiketoiminnan intressien kannalta järkevää tapaa jakaa dataansa. Kuitenkin ”varallisuus”-ajattelun riskinä voi olla, että käyttämättömästä datasta ei saada mitään arvoa ja kilpailijat menevät ohi. Yhteistyön kehittäminen vaatii uutta ymmärrystä jakamistalouteen ja siten hyödyn- ja tulonjakomallien kehittämistä. Datan markkinapaikkoja tulee myös kehittää.
Big datan potentiaalista kertoo jo se, että perusteilla on big data labseja ja tutkimuskeskuksia ympäri Eurooppaa, kuten esimerkki Saksan Smart Data Innovation Labista kiellii. Suomen on mentävä mukaan tähän toimintaan, jotta yhteistyö, kokeilut, tutkimus, yritysten sovellusosaaminen ja siten yleinen alan kehitys vauhdittuisi. Osaavien ihmisten välisten yhteyksien rakentaminen katsotaan nyt olennaiseksi, samoin kuin hyvien käytäntöjen jakaminen eri toimijoiden välillä. Verkostotoiminnan tavoitteiden on oltava kuitenkin selkeitä: toiminnan on tuettava yritysten ja ihmisten suorituskykyä tuloksia seurattavissa olevalla tavalla.
Selvitetään tarvetta Big data-hubille, erityisesti isojen ja pk-yritysten yhteisille datahankkeille ja datan vaihdolle liiketoiminnassa
Singapore ja social analytics: social analytics-yhteistyökonsortio kehittää tämän alan työkaluja yhdessä. http://www.ida.gov.sg/Collaboration-and-Initiatives/Collaboration-Opportunities/Store/Social-Analytics-SA-for-Business-Enterprises-Call-for-Collaboration-CFC
Edistetään erityisesti pk-yritysten ja start-uppien big data resursseja (välineitä ja pääsyä aineistoihin) ja osaamista. Aktivoidaan näitä yrityksiä myös mukaan kansallisiin hankkeisiin ja yritysten aloitteisiin (vrt. GE:n tarjoamat fasiliteetit)
Luodaan kansallinen data-analytiikan toimijoiden verkosto (tutkimuslaitos/yliopistoyhteistyö), jossa edistetään myös teknologiasiirtoa yrityksiin (menetelmät, työkalut, osaaminen)
Osallistutaan ja jaetaan kansallisesti näkemyksiä EU:n Big/NESSI data foorumin toimiin
EU:n big data public private forum: olemassa olevaan infrastruktuuriin perustuva ekosysteemi, jossa luodaan myös yhteistyön malleja, fasilitoidaan datan siirtoa (data exchange) ja tarkastellaan samalla miten liiketoiminta/(asiakas) johtaminen muuttuu. Forumilla tehdään kokeiluja big data aineistoilla, joiden avulla kehitetään osaamista, tutkimuksen hyödyntämistä ja työkalujen siirtoa (research transfer community) http://www.big-project.eu/
Verkottuneet käyttäjät (connected users) ovat nyt big data kehityksen keskiössä, sillä se tarkoittaa useilla sektoreilla tiedon hyödyntämisen nopeutumista. Esim. liikenteessä käyttäjiltä kerättyä tietoa yhdistetään liikenteen hallintaan.
Kehitetään joukkoistamiseen perustuvia big data- malleja, joista parhaillaan syntyy uudentyyppisiä laajoja ekosysteemejä.
Koulutus
Osaamisen kehittäminen on olennaisin big dataa edistävä ja samalla kehitystä rajoittava tekijä. Tarvitaan sekä teknistä että toimialaspesifistä osaamisen kehittämistä. Osaamisessa tärkeää erilaisten datamuotojen käsittely ja jalostaminen (“blended human and algoritmic data processing). Datatieteilijältä odotettavat taidot (kuvailua edellytyksissä) ovat poikkitieteellisiä, joten tiimien (osaajapoolit) rakentaminen voisi olla yhtenä ratkaisuna osaajapulaan.
Tutkintoperusteisen ja käytännönläheisen opiskelun kehittäminen esimerkiksi harjoitteluna yrityksissä, osallistumisena tutkimusohjelmiin tai vapaaehtoisina kursseina tai verkkomoduleina ovat molemmat tarpeen.
Data-analytiikkaosaamista on saatava kaikille oppitasoille peruskoulusta lähtien. Yliopistotutkinnon yleisiin/yleissivistäviin opintoihin tulisi saada datan hallinnan ja käsittelyn painotusta oppiaineesta riippumatta.
Alan koulutusorganisaatiot, yritykset ja asiantuntijat muodostavat opetushallituksen johdolla näkemyksen tarjolla olevasta koulutuksesta ja tarvittavista vähimmäistaidoista eri rooleissa, jotka tulevat mukaan tutkintoihin (ammattikorkea, yliopisto, täydennyskoulutus). Oppilaitokset ja yliopistot voivat täten myös paremmin erikoistua ja tehdä yhteistyötä esimerkiksi verkkomuotoisen opiskelun kehittämiseksi.
EU:n tavoitteena on luoda Euroopassa yliopistojen verkosto datataitojen osalta.
Vaikutetaan siihen, että peruskoulun opetussuunnitelmiin sisältyy dataan käyttöön liittyvää opetusta vuonna 2016 ja tuetaan open source teknologioiden leviämistä.
Opettajankoulutuksen kehittäminen (big data opetustaidot):
Kartoitetaan opetushallinnon johdolla tarvittavia osaamisprofiileja ja olemassa olevaa koulutustarjontaa.
'Koordinoidaan kansallisesti käynnisteillä ja sunnitteilla olevia big data koulutusohjelmia.
Osallistutaan EU-laajuisen big dataan erikoistuvien yliopistojen verkoston luomiseen
Soveltava koulutus yrityksissä
Soveltavan ja täydennyskoulutuksen malleja on kehitettävä big data asiantuntijaksi kasvamiseksi. Yrityksissä osaamista kehittäisivät erilaiset harjoittelujaksot ja projektit yms. alan opiskelijoille, tutkijoille ja työmarkkinoilla vapaana oleville osaajille.
Ohjelmointi/tietojenkäsittely/bisnesprosessien opiskelijoita kannustetaan yrityksiin big data harjoitteluun, projekteihin ja opinnäytetöihin (hyvänä esimerkkinä Aallossa diplomityöparit)
Toteutetaan reaaliaikaista tarvekartoitusta siitä, kuinka paljon ja millaista osaamista yritykset tarvitsevat (big data yritysklusteri/foorumi)'''
Täydennys- ja muuntokoulutusta uudistetaan vastaamaan big data osaamistarpeita
'Tuetaan yritysten big data osaamista kehittävien sisäisten hautomojen toimintaa, osaamisvaihtoa ja työnkiertoa'
Tutkimus
Kokeilut ja rahoitus
Kokeilevaa toimintaa big datan hyödyntämiseksi ja analyysimenetelmien soveltamiseksi käytännön tilanteisiin ja yhteiskunnallisiin haasteisiin sekä uuteen liiketoimintaan tulee tukea ja edistää. Big datan kokeilut tulisi saada siten vahvemmin mukaan erilaisten ohjelmien ja kehityshankkeiden osaksi.
Esimerkiksi Tekes on käynnistänyt ohjelmavalmistelun Teollisen Internetin alueelle. Saman valmistelun yhteydessä tarkastellaan tarpeet myös 5G-mobiiliverkkojen alueella, joka on yksi tekijä teollisen internetin toteuttamisessa. Valmistelun tuloksena voi olla yksi tai useampi ohjelma tai jokin muu kokonaisuus. Big data ja data-analytiikka ovat myös keskeisessä roolissa teollisen internetin sovelluksissa. Valmistelun tuloksena mahdollisesti käynnistyvä(t) ohjelma(t) tai muut toimenpiteet voisivat käynnistyä syksyllä 2014 (Q4/2014). Valmistelun verkkosivut http://www.tekes.fi/teollinen-internet-ja-5G.
Erityisesti menetelmiä ja teknologiaa kehittävät yritykset voivat tarvita pääomaehtoista rahoitusta kehitystoimintaansa. Pääomaehtoista rahoitusta ja big datan liiketoimintamahdollisuuksien arviointiosaamista tulee siten kehittää. Yhdysvalloissa big data houkuttaa merkittäviä riskisijoituksia. Suomalaisen menetelmä- ja teknologiaosaamisen kehittäminen ja kaupallistaminen tulee löytää niin yksityistä kuin julkista rahoitusta sekä näiden yhdistelmiä esimerkkinä Tekes Pääomasijoitus Oy.
Kansallista tukea ja verkostoa EU-tukiohjelmien hyödyntämiseen vahvistetaan erityisesti big data painotuksella (Horizon verkosto, Tekes, kehittäjäorganisaatiot)
Tuetaan erilaisia big data kokeiluja ja jaetaan näistä saatuja kokemuksia. Erityisen tarpeelliseksi katsotaan datan saatavuus hallituissa kokeiluissa, joihin liittyy esimerkiksi mobiilipaikantaminen'
Disruptio datan vaikutuksesta tulevat voimakkaasti myös liiketoimintamalleihin: kokeilevat kehityshankkeet hyödyn ja tulonjaonmallien kehittämiseksi (vrt. myös yritysten yhteistyön aktivointitoimet)
Pääomaehtoisen rahoituksen (yksityiset ja julkiset pääomasijoittajat) saatavuutta tulee edistää
Mydata
MyData selvityksen malleja testataan valituilla alueilla kehityksen vauhdittamiseksi ja uusien tietomallien yleistymiseksi eri alojen yritysten avulla. Pitkällä aikavälillä luodaan alustaa MyDatalle, johon yksilö voi omaa tietoaan kerätä ja haluamallaan tavalla jakaa sekä hyödyntää.
Yhteistyö Iso-Britannian MiData-labn kanssa Midata-kehityksen vahvistamiseksi
Datan saatavuus
Avoimet rajapinnat ja data ovat myös big datan hyödyntämisen mahdollistajia, joten kehitystyötä tulisi edelleen vahvistaa sekä luoda tapoja yhdistää julkista avointa dataa ja yritysten dataa
Datan hyödyntämiseen ratkaisuja etsiviä ja kehittäviä henkilöitä rekrytoidaan hallintoon, esimerkiksi kumppanikoodarimallin mukaisesti, College-to-govt harjoitteluohjelmat tms.
Yhteentoimivuuden kehittäminen datan jakamisen standardeilla ja yhteishankkeilla erityisesti kunta- ja kaupunkiympäristössä (mm Kuusaika- hankkeen puitteisa)
Määritellään kansallisen dataportaalin hyödyntäminen myös big data kanavana Avoimen tiedon ohjelman osana (VM)
Velvoitetaan virastoja tunnistamaan data-aineistoja, joista big data kehityksen kannalta saataisiin merkitäviä hyötyjä. Tuetaan tässä virastojen pilottiprojekteja (Avoimen tiedon ohjelma/kehykset).
Sääntely
Suurena haasteena on se, miten tasapainottaa big datan hyödyntämiseen ja tietosuojaan liittyvät toimet sääntelyssä. Henkilöiden yksityisyyden suoja ei saa tässä vaarantua.
Sääntelyn kehittämisen ajatuksena tulee kuitenkin olla se, että markkinoille tulon esteitä voidaan purkaa ja samalla luodaan kannusteita datan saatavuuteen huomioiden henkilöiden oikeudet dataan. Yleisesti säädösvalmistelussa tulisi huomioida dataan liittyvät edellytykset, joten voidaan myös kysyä onko big datassa erityispiirteitä tai tarpeita huomoitavaksi sääntelyssä.
Sääntelyä tukisi yhteiset käytännöt ja periaatteet, ns. Big data ”etiketti” siitä, miten dataa hyödynnetään kunnioittaen niin kansalaisten kuin yritystenkin oikeuksia. Hyviä datan hallinnon ja käsittelyn tapoja tulee luoda yhteistyössä. Tämä voisi toimia myös Suomen vahvuutena kansainvälisessä kilpailussa datavarannoista.
Tehdään selvitys big datan käyttöön vaikuttavista laeista
Varmistetaan, että EU:n tietosuoja-asetus ja sen soveltaminen Suomessa mahdollistaa big data kehityksen yksityisyydensuojaa vaarantamatta
Kehitetään suomalainen Big data "etiketti" ohjesääntö
Datatietoisuus
Big datan hyödyntäminen kaikilla sektoreilla on olennaista, joten tietoisuutta aiheesta on lisättävä kohti datan tunnistamista, kokeiluja ja kehitystoimintaa. Sanotaan, että big datan teknologiakehitys on evoluutiota, mutta samalla liiketoimintaprosessien kehitys käy läpi nyt revoluutiota. Erityisesti yrityksissä tarvitaan siten toimenpiteitä ymmärryksen lisäämiseksi liiketoiminnan muutoksesta dataintensiivisessä kilpailussa.
Suomen jokaisen organisaation päätöksenteon tulisi muuttua tietoon perustuvaksi (data driven) sen sijaan että päätökset tehtäisiin mutu-pohjaisesti. Maailmalla on tietopohjaisesta päätöksenteosta esimerkkinä mm. amerikkalainen autonvalmistaja Ford, joka selvisi autoteollisuuden kriisistä siirtymällä data-driven päätöksentekoon. Tällainen tietoon perustuva päätöksenteko vaatii tuekseen toimivan tiedonkeruun ja analysoinnin. Sama tiedonkeruu ja -analysointi palvelee myös open data -aloitteita.
”Datalähettiläitä” hankitaan tuomaan big data- tietoutta ja osaamista yritysten ja hallinnon käyttöön toteutettuna mm. kansainvälisinä vierailijaluentoina ja osaajavaihtona
Luodaan alan yrityksiä, tutkijoita ja asiantuntijoita kokoava avoin Big data-klusteri sekä osaamisen kehittämistä tukevaa verkostotoimintaa tämän ympärille (Tekes, Teknologiateollisuus, Tekniikan Akateemiset, Ohjelmistoyrittäjät, TTL, yritykset jne).
Julkisen hallinnon organisaatioihin nimetään datavastaavia, joiden tehtäviin kuuluu datan keruun ja analysoinnin järjestäminen. Yksityisiä yrityksiä ja muita yhteisöjä varten voidaan järjestää neuvontaa.
Teknologiat ja standardit
Big datan teknologisia kehitystarpeita on tunnistettu olevan mm. datan varastoinnin tekniset standardit, datan välittämisen ja integroinnin tavat. Teknologiakohtaisia ekosysteemejä on syntymässä, joten näiden ymmärtäminen ja sovittaminen omaan kehitysympäristöön on olennaista. Datan käsittelyn ja hallinnoinnin harmonisointi edistäisi datan yhteen toimivuutta ja siten käyttöä. On huomattava, että dataan liittyviä standardeja (esim INSPIRE, PSI) on jo olemassa, joten näitä voidaan hyödyntää ja soveltaa myös big dataan.
Tunnistetaan keskeiset standardointiprosessit joissa tulee olla mukana sekä organisoidutaan toimimaan näissä
Standardien luominen erityisesti datan varastointiin (storage) ja siirtoon (exchange) kehittää datan käsittelyn tekniikoita, työskentelymetodeja ja tehokkaita algoritmeja.
Tietosuoja ja yksityisyys on myös teknologinen kehityskysymys. Panostetaan tieto/yksityisyydensuojan ratkaisujen teknologiakehitykseen (esim. Tekes)
Infrastruktuuri
Big datan hyödyntäminen vaatii korkealuokkaista tieto- ja viestintäinfrastruktuuria. Varmistetaan, että perusedellytykset, kuten viestintä- ja tiedonsiirtoyhteydet, pilvikapasiteetti yms. ovat kansainvälistä huipputasoa ja ennakoidaan tarpeita infrastuktuurin osalta niin yksittäisen toimijan kuin yhteishankkeiden/toiminnan kannalta.
Keskeisten kansallisten toimijoiden tunnistaminen ja organisointimallin luominen on tarpeen myös infrastruktuurin kehittämistä ohjaamaan. Infrastruktuurikoordinaation tehtävä on hakea tehokuutta ja yhteentoimivuutta.
Kansainvälisesti hyvänä esimerkkinä voidaan verrata Open Cloud Massachusettsin toimintatapaa ja datapalvelujen ”biotope”-ajattelua sekä UK:n ODI toimintaa muun muassa datasovellusten edistäjänä ja datan saatavuuden kehittäjänä.
Jaettujen infrastruktuurien kehittämistä tehdään tarpeiden mukaan ja ne voivat tarkoittaa esimerkiksi: - Tiedonkäsittely- ja laskentainfrastruktuurien kehittämistä - Yhteisiä datan hallintasysteemejä ylläpitoon ja laadunvarmistukseen - T&k-yhteistyön ja arvioinnin kehittämistä erilaisista analyysimenetelmistä - Datapalvelujen ekosysteemin luontia, kuten datan jakelupisteet, kauppapaikat ja julkaisukirjastot sekä datasovellusten edistäjärooli - Kokeilulaboratorio, jossa voidaan testata teknologioita ilman omaa mittavaa panostusta
Kehitetään kansallista big data infrastuktuuria verkostomaisella yhteistyöllä
Toimijat ja hankkeet
Tähän osioon kerätään suomalaiset ja yhteistyön kannalta kansainväliset toimijat tai hankkeet big datan kehitystyössä. Erityisesti tarkasteltava niitä toimijoita, jotka ovat kriittisiä strategian toteuttamisen kannalta. Toimijoista luodaan näkemystä verkostosta, joka voi toteuttaa strategiassa esitettyjä toimia ja luoda esimerkkejä tunnistetuilla sovellusalueilla eli toimia siten suomalaisina edelläkävijöinä.
Vaikuttavuus
Tässä osiossa on tarkoitus luoda arvio strategiassa esitettyjen toimenpiteiden vaikuttavuudesta ja potentiaalista kansantaloudessamme.
Taustaksi tuodaan tähän arvioita big datan potentiaalista kansainvälisiä ja kotimaisia tutkimuksia tai selvityksiä vertaillen (OECD, WEF, EU). Suomen osuutta voidaan arvioida esimerkiksi bkt suhteella.
Big Datan tuottavuusparannuksista julkishallintoon on haastavaa esittää tarkkoja arvioita ilman täsmällisempää analyysiä, mutta McKinsey arvioi vuoden 2011 raportissaan Euroopan julkishallintojen kykenevän Big Dataa hyödyntämällä vähentämään hallinnollisia kulujaan n. 15-20 prosenttia ja lisäämään 0,5 prosentin vuotuisen parannuksen tuottavuuteen. (McKinsey Global Institute, 2011, Big data: The next frontier for innovation, competition, and productivity)
Strategian toimien vaikuttavuutta arviointia ajassa. Esimerkiksi kuva siitä, miten välittömästi toimet vaikuttavat: kokeilut vaikuttavat lyhyellä aikavälillä, koulutus pitkällä jne. Varmistettaa siten, että saavutetaan vaikuttavuutta sekä lyhyellä että pidemmällä aikavälillä.
kuva: Toimien vaikuttavuus ajassa ja tarvittavat resurssit
Strategiassa valitaan vaihtoehtoisia/toisiaan täydentäviä tarkastelukulmia vaikuttavuuteen toimenpiteiden tarkentuessa:
1. Esitetään arvioinnin pohjalta, miten ja kuinka merkittävästi edellä mainittujen toimien toteuttaminen vaikuttaisi yhteiskuntaan tai talouteen. Linkitetään ”grand challengeihin” mm. kestävyysvaje (esimerkkien kautta esim. julkinen hallinto)
2. Määritetään arvio tarvittavista investoinneista strategian toteutukseen ja investoitavien pääomien tuottoa (”ROI”)
3. Datan arvoketju ja arvonluonti A) Datan arvoketju: 1. data hankinta (acquisition) 2. analyysi 3. tuki ja joukkoistaminen (curation) 4. varastointi 5. käyttö B) Arvonluonti: miten datasta saadaan arvoa (data extraction)
4. Kansantalouden tasolla tarvitaan esimerkkejä demonstroimaan big datan käytön vaikutuksia kasvuun ja työllisyyteen. Vaatii myös datan relevanttiuden arviointia: 1. datan määrällinen kysyntä (edustaa myös poikkisektorien mahdollisuuksia, kuten geodata) 2. kyseisen sektorin merkitys (osuus kansantaloudesta; esim teollisuus, palvelut, julkinen sektori, maatalous, kolmas sektori)
5. Arvio Suomen big data PPP ekosysteemin edellytyksistä ja potentiaalista. Ensin on ymmärrettävä ketä tässä toimii ja mitä toimintaa on, joten olisi kartoitettava keskeiset toimijat ja hankkeet
6. Potentiaali, että kehitystoimet toteutetaan versus vaihtoehto ettei asiaa edistetä mitenkään
Strategian toimeenpanoon luodaan suunnitelma.
Luodaan yhteistyössä roadmap toimien vastuista, etenemisjärjestyksestä, aikatauluista, vaikuttavuudesta ja mahdollisista riskeistä. Vahvistetaan strategian toimeenpano valtioneuvoston periaatepäätöksellä ja/tai hallitusohjelmassa. Toimet, jotka voidaan käynnistää heti resursoidaan ja organisoidaan välittömästi.