Energiatasemalli

Opasnet Suomista
Versio hetkellä 13. elokuuta 2015 kello 11.27 – tehnyt Julia (keskustelu | muokkaukset)
Siirry navigaatioon Siirry hakuun

op_fi:Energiatase

Kysymys

Mikä on energiatase ja miten se mallinnetaan?

Vastaus

Laskemalla yhteen tietyn ajanjakson sisällä tuotettu energia ja vähentämällä siitä kulutettu energia saadaan energiatase. Koska sähköverkossa ja kaukolämpöverkossa ei ole merkittäviä energian varastointimekanismeja, täytyy taseen olla lyhyellä aikavälillä käytännössä nolla. Kun tarkastellaan tietyn alueen (kuten Helsingin) energiatasetta, voidaan olettaa, että sähköä voidaan viedä ja tuoda kansainvälisillä markkinoilla. Kaukolämpöverkon energia täytyy kuitenkin tuottaa paikallisesti. Tämä muodostaa taustan tärkeälle kysymykselle siitä, kuinka optimoidaan tuotanto niin ettei synny merkittäviä vajauksia, minimoidaan tappiot ja maksimoidaan voitot. Osittain tämä ongelma ratkeaa todellisen maailman markkinavoimien avulla.

Viimeisin energiatasemallimme käyttää lineaarisia ohjelmointityökaluja optimaalisen aktiviteettitason löytämiseen joukolle tuotantoyksiköitä päämallin simuloimissa tilanteissa. Päämalli on vastuussa päätöksentekoon liittyvistä asioista, kun taas energiataseen optimointi ainoastaan simuloi todellisen maailman markkinoiden toimintaa.

Lineaarinen ohjelmointiongelma muodostuu seuraavasti.

For each production unit: let xi be activity of the plant. Lets also have variables yj for deficits and excesses for each type of energy produced. The objective function is the function we are optimising. Each production unit has a unit profit per activity denoted by ai which is determined by the amount of different input commodities (e.g. coal) per amount of different output commodities (i.e. electricity and heat) and their market prices. Also, lets say we want to make sure that district heat demand is always met when possible and have a large penalty factor for each unit of heat demand not met (1M€ in the model). In addition, it must be noted that excess district heat becomes wasted so it counts as loss. Let these deficit and excess related losses be denoted by bj. The whole objective function then becomes: sum(xiai) + sum(yjbj). The values of variables are constrained by equalities and inequalities: the sum of production of a commodity is equal to its demand minus deficit plus excess, activity is constrained by the maximum capacity and all variables are non-negative by definition. This can be efficiently solved by computers for each given instance. Production wind-up and wind-down is ignored, since time continuity is not considered. As a consequence fuel limits (e.g. diminishing hydropower capacity) are not modelled completely either. }}