Ero sivun ”Big Data 6: Toimenpiteet” versioiden välillä

Opasnet Suomista
Siirry navigaatioon Siirry hakuun
(Ak: Uusi sivu: ==Toimenpiteet== ===Yhteistyö eri alojen välillä=== Yleisesti jaetaan näkemys tarpeesta hakea datan avulla synergioita eri aloilta. Pilvipalvelujen hyödyntäminen on tässä...)
 
Ei muokkausyhteenvetoa
Rivi 152: Rivi 152:


'''Kehitetään kansallista big data infrastuktuuria verkostomaisella yhteistyöllä'''
'''Kehitetään kansallista big data infrastuktuuria verkostomaisella yhteistyöllä'''
'''Paluu pääsivulle'''
[[Big_Data_-strategia]]

Versio 20. toukokuuta 2014 kello 15.24

Toimenpiteet

Yhteistyö eri alojen välillä

Yleisesti jaetaan näkemys tarpeesta hakea datan avulla synergioita eri aloilta. Pilvipalvelujen hyödyntäminen on tässä olennaista, sillä se mahdollistaa uudenlaisen datan yhdistelyn ja jakamisen. Löydettävä siten toimia, joilla erityisesti yritysten horisontaalista ja vertikaalista verkottumista voidaan edesauttaa siten, että (big ja avointa) dataa jaettaisiin sopivalla alustalla/rajapinnoilla yhteiseen käyttöön ja yhdisteltäväksi uudella tavalla.

Yrityksillä (erityisesti suurilla) on hyödyntämätöntä dataa, mutta ei osaamista/resursseja/ideaa käyttää tätä. Vaatii toimien suuntaaminen: 1. kannustetaan/tuetaan yrityksiä avaamaan rajapintoja dataansa 2. yhteiset kehitysalustat datan jakamiseksi, joista jalostuu uusia lisäarvopalveluja

Haasteena nähdään se, ettei yrityksillä ole välttämättä kannusteita tai liiketoiminnan intressien kannalta järkevää tapaa jakaa dataansa. Kuitenkin ”varallisuus”-ajattelun riskinä voi olla, että käyttämättömästä datasta ei saada mitään arvoa ja kilpailijat menevät ohi. Yhteistyön kehittäminen vaatii uutta ymmärrystä jakamistalouteen ja siten hyödyn- ja tulonjakomallien kehittämistä. Datan markkinapaikkoja tulee myös kehittää.

Big datan potentiaalista kertoo jo se, että perusteilla on big data labseja ja tutkimuskeskuksia ympäri Eurooppaa, kuten esimerkki Saksan Smart Data Innovation Labista kiellii. Suomen on mentävä mukaan tähän toimintaan, jotta yhteistyö, kokeilut, tutkimus, yritysten sovellusosaaminen ja siten yleinen alan kehitys vauhdittuisi. Osaavien ihmisten välisten yhteyksien rakentaminen katsotaan nyt olennaiseksi, samoin kuin hyvien käytäntöjen jakaminen eri toimijoiden välillä. Verkostotoiminnan tavoitteiden on oltava kuitenkin selkeitä: toiminnan on tuettava yritysten ja ihmisten suorituskykyä tuloksia seurattavissa olevalla tavalla.

Selvitetään tarvetta Big data-hubille, erityisesti isojen ja pk-yritysten yhteisille datahankkeille ja datan vaihdolle liiketoiminnassa

Singapore ja social analytics: social analytics-yhteistyökonsortio kehittää tämän alan työkaluja yhdessä. 
http://www.ida.gov.sg/Collaboration-and-Initiatives/Collaboration-Opportunities/Store/Social-Analytics-SA-for-Business-Enterprises-Call-for-Collaboration-CFC 

Edistetään erityisesti pk-yritysten ja start-uppien big data resursseja (välineitä ja pääsyä aineistoihin) ja osaamista. Aktivoidaan näitä yrityksiä myös mukaan kansallisiin hankkeisiin ja yritysten aloitteisiin (vrt. GE:n tarjoamat fasiliteetit)

Luodaan kansallinen data-analytiikan toimijoiden verkosto (tutkimuslaitos/yliopistoyhteistyö), jossa edistetään myös teknologiasiirtoa yrityksiin (menetelmät, työkalut, osaaminen)

Osallistutaan ja jaetaan kansallisesti näkemyksiä EU:n Big/NESSI data foorumin toimiin

EU:n big data public private forum: olemassa olevaan infrastruktuuriin perustuva ekosysteemi, jossa luodaan myös yhteistyön malleja, fasilitoidaan datan 
siirtoa (data exchange) ja tarkastellaan samalla miten liiketoiminta/(asiakas) johtaminen muuttuu. Forumilla tehdään kokeiluja big data aineistoilla, 
joiden avulla kehitetään osaamista, tutkimuksen hyödyntämistä ja työkalujen siirtoa (research transfer community) http://www.big-project.eu/ 

Verkottuneet käyttäjät (connected users) ovat nyt big data kehityksen keskiössä, sillä se tarkoittaa useilla sektoreilla tiedon hyödyntämisen nopeutumista. Esim. liikenteessä käyttäjiltä kerättyä tietoa yhdistetään liikenteen hallintaan.

Kehitetään joukkoistamiseen perustuvia big data- malleja, joista parhaillaan syntyy uudentyyppisiä laajoja ekosysteemejä.

Koulutus

Osaamisen kehittäminen on olennaisin big dataa edistävä ja samalla kehitystä rajoittava tekijä. Tarvitaan sekä teknistä että toimialaspesifistä osaamisen kehittämistä. Osaamisessa tärkeää erilaisten datamuotojen käsittely ja jalostaminen (“blended human and algoritmic data processing). Datatieteilijältä odotettavat taidot (kuvailua edellytyksissä) ovat poikkitieteellisiä, joten tiimien (osaajapoolit) rakentaminen voisi olla yhtenä ratkaisuna osaajapulaan.

Tutkintoperusteisen ja käytännönläheisen opiskelun kehittäminen esimerkiksi harjoitteluna yrityksissä, osallistumisena tutkimusohjelmiin tai vapaaehtoisina kursseina tai verkkomoduleina ovat molemmat tarpeen.

Data-analytiikkaosaamista on saatava kaikille oppitasoille peruskoulusta lähtien. Yliopistotutkinnon yleisiin/yleissivistäviin opintoihin tulisi saada datan hallinnan ja käsittelyn painotusta oppiaineesta riippumatta.

Alan koulutusorganisaatiot, yritykset ja asiantuntijat muodostavat opetushallituksen johdolla näkemyksen tarjolla olevasta koulutuksesta ja tarvittavista vähimmäistaidoista eri rooleissa, jotka tulevat mukaan tutkintoihin (ammattikorkea, yliopisto, täydennyskoulutus). Oppilaitokset ja yliopistot voivat täten myös paremmin erikoistua ja tehdä yhteistyötä esimerkiksi verkkomuotoisen opiskelun kehittämiseksi.

EU:n tavoitteena on luoda Euroopassa yliopistojen verkosto datataitojen osalta.

Vaikutetaan siihen, että peruskoulun opetussuunnitelmiin sisältyy dataan käyttöön liittyvää opetusta vuonna 2016 ja tuetaan open source teknologioiden leviämistä.

Opettajankoulutuksen kehittäminen (big data opetustaidot):

Kartoitetaan opetushallinnon johdolla tarvittavia osaamisprofiileja ja olemassa olevaa koulutustarjontaa.

'Koordinoidaan kansallisesti käynnisteillä ja sunnitteilla olevia big data koulutusohjelmia.

Osallistutaan EU-laajuisen big dataan erikoistuvien yliopistojen verkoston luomiseen

Soveltava koulutus yrityksissä

Soveltavan ja täydennyskoulutuksen malleja on kehitettävä big data asiantuntijaksi kasvamiseksi. Yrityksissä osaamista kehittäisivät erilaiset harjoittelujaksot ja projektit yms. alan opiskelijoille, tutkijoille ja työmarkkinoilla vapaana oleville osaajille.

Ohjelmointi/tietojenkäsittely/bisnesprosessien opiskelijoita kannustetaan yrityksiin big data harjoitteluun, projekteihin ja opinnäytetöihin (hyvänä esimerkkinä Aallossa diplomityöparit)

Toteutetaan reaaliaikaista tarvekartoitusta siitä, kuinka paljon ja millaista osaamista yritykset tarvitsevat (big data yritysklusteri/foorumi)'''

Täydennys- ja muuntokoulutusta uudistetaan vastaamaan big data osaamistarpeita

'Tuetaan yritysten big data osaamista kehittävien sisäisten hautomojen toimintaa, osaamisvaihtoa ja työnkiertoa'

Tutkimus

Kokeilut ja rahoitus

Kokeilevaa toimintaa big datan hyödyntämiseksi ja analyysimenetelmien soveltamiseksi käytännön tilanteisiin ja yhteiskunnallisiin haasteisiin sekä uuteen liiketoimintaan tulee tukea ja edistää. Big datan kokeilut tulisi saada siten vahvemmin mukaan erilaisten ohjelmien ja kehityshankkeiden osaksi.

Esimerkiksi Tekes on käynnistänyt ohjelmavalmistelun Teollisen Internetin alueelle. Saman valmistelun yhteydessä tarkastellaan tarpeet myös 5G-mobiiliverkkojen alueella, joka on yksi tekijä teollisen internetin toteuttamisessa. Valmistelun tuloksena voi olla yksi tai useampi ohjelma tai jokin muu kokonaisuus. Big data ja data-analytiikka ovat myös keskeisessä roolissa teollisen internetin sovelluksissa. Valmistelun tuloksena mahdollisesti käynnistyvä(t) ohjelma(t) tai muut toimenpiteet voisivat käynnistyä syksyllä 2014 (Q4/2014). Valmistelun verkkosivut http://www.tekes.fi/teollinen-internet-ja-5G.

Erityisesti menetelmiä ja teknologiaa kehittävät yritykset voivat tarvita pääomaehtoista rahoitusta kehitystoimintaansa. Pääomaehtoista rahoitusta ja big datan liiketoimintamahdollisuuksien arviointiosaamista tulee siten kehittää. Yhdysvalloissa big data houkuttaa merkittäviä riskisijoituksia. Suomalaisen menetelmä- ja teknologiaosaamisen kehittäminen ja kaupallistaminen tulee löytää niin yksityistä kuin julkista rahoitusta sekä näiden yhdistelmiä esimerkkinä Tekes Pääomasijoitus Oy.

Kansallista tukea ja verkostoa EU-tukiohjelmien hyödyntämiseen vahvistetaan erityisesti big data painotuksella (Horizon verkosto, Tekes, kehittäjäorganisaatiot)

Tuetaan erilaisia big data kokeiluja ja jaetaan näistä saatuja kokemuksia. Erityisen tarpeelliseksi katsotaan datan saatavuus hallituissa kokeiluissa, joihin liittyy esimerkiksi mobiilipaikantaminen'

Disruptio datan vaikutuksesta tulevat voimakkaasti myös liiketoimintamalleihin: kokeilevat kehityshankkeet hyödyn ja tulonjaonmallien kehittämiseksi (vrt. myös yritysten yhteistyön aktivointitoimet)

Pääomaehtoisen rahoituksen (yksityiset ja julkiset pääomasijoittajat) saatavuutta tulee edistää

Mydata

MyData selvityksen malleja testataan valituilla alueilla kehityksen vauhdittamiseksi ja uusien tietomallien yleistymiseksi eri alojen yritysten avulla. Pitkällä aikavälillä luodaan alustaa MyDatalle, johon yksilö voi omaa tietoaan kerätä ja haluamallaan tavalla jakaa sekä hyödyntää.

Yhteistyö Iso-Britannian MiData-labn kanssa Midata-kehityksen vahvistamiseksi

Datan saatavuus

Avoimet rajapinnat ja data ovat myös big datan hyödyntämisen mahdollistajia, joten kehitystyötä tulisi edelleen vahvistaa sekä luoda tapoja yhdistää julkista avointa dataa ja yritysten dataa

Datan hyödyntämiseen ratkaisuja etsiviä ja kehittäviä henkilöitä rekrytoidaan hallintoon, esimerkiksi kumppanikoodarimallin mukaisesti, College-to-govt harjoitteluohjelmat tms.

Yhteentoimivuuden kehittäminen datan jakamisen standardeilla ja yhteishankkeilla erityisesti kunta- ja kaupunkiympäristössä (mm Kuusaika- hankkeen puitteisa)

Määritellään kansallisen dataportaalin hyödyntäminen myös big data kanavana Avoimen tiedon ohjelman osana (VM)

Velvoitetaan virastoja tunnistamaan data-aineistoja, joista big data kehityksen kannalta saataisiin merkitäviä hyötyjä. Tuetaan tässä virastojen pilottiprojekteja (Avoimen tiedon ohjelma/kehykset).

Sääntely

Suurena haasteena on se, miten tasapainottaa big datan hyödyntämiseen ja tietosuojaan liittyvät toimet sääntelyssä. Henkilöiden yksityisyyden suoja ei saa tässä vaarantua.

Sääntelyn kehittämisen ajatuksena tulee kuitenkin olla se, että markkinoille tulon esteitä voidaan purkaa ja samalla luodaan kannusteita datan saatavuuteen huomioiden henkilöiden oikeudet dataan. Yleisesti säädösvalmistelussa tulisi huomioida dataan liittyvät edellytykset, joten voidaan myös kysyä onko big datassa erityispiirteitä tai tarpeita huomoitavaksi sääntelyssä.

Sääntelyä tukisi yhteiset käytännöt ja periaatteet, ns. Big data ”etiketti” siitä, miten dataa hyödynnetään kunnioittaen niin kansalaisten kuin yritystenkin oikeuksia. Hyviä datan hallinnon ja käsittelyn tapoja tulee luoda yhteistyössä. Tämä voisi toimia myös Suomen vahvuutena kansainvälisessä kilpailussa datavarannoista.

Tehdään selvitys big datan käyttöön vaikuttavista laeista

Varmistetaan, että EU:n tietosuoja-asetus ja sen soveltaminen Suomessa mahdollistaa big data kehityksen yksityisyydensuojaa vaarantamatta

Kehitetään suomalainen Big data "etiketti" ohjesääntö

Datatietoisuus

Big datan hyödyntäminen kaikilla sektoreilla on olennaista, joten tietoisuutta aiheesta on lisättävä kohti datan tunnistamista, kokeiluja ja kehitystoimintaa. Sanotaan, että big datan teknologiakehitys on evoluutiota, mutta samalla liiketoimintaprosessien kehitys käy läpi nyt revoluutiota. Erityisesti yrityksissä tarvitaan siten toimenpiteitä ymmärryksen lisäämiseksi liiketoiminnan muutoksesta dataintensiivisessä kilpailussa.

Suomen jokaisen organisaation päätöksenteon tulisi muuttua tietoon perustuvaksi (data driven) sen sijaan että päätökset tehtäisiin mutu-pohjaisesti. Maailmalla on tietopohjaisesta päätöksenteosta esimerkkinä mm. amerikkalainen autonvalmistaja Ford, joka selvisi autoteollisuuden kriisistä siirtymällä data-driven päätöksentekoon. Tällainen tietoon perustuva päätöksenteko vaatii tuekseen toimivan tiedonkeruun ja analysoinnin. Sama tiedonkeruu ja -analysointi palvelee myös open data -aloitteita.

”Datalähettiläitä” hankitaan tuomaan big data- tietoutta ja osaamista yritysten ja hallinnon käyttöön toteutettuna mm. kansainvälisinä vierailijaluentoina ja osaajavaihtona

Luodaan alan yrityksiä, tutkijoita ja asiantuntijoita kokoava avoin Big data-klusteri sekä osaamisen kehittämistä tukevaa verkostotoimintaa tämän ympärille (Tekes, Teknologiateollisuus, Tekniikan Akateemiset, Ohjelmistoyrittäjät, TTL, yritykset jne).

Julkisen hallinnon organisaatioihin nimetään datavastaavia, joiden tehtäviin kuuluu datan keruun ja analysoinnin järjestäminen. Yksityisiä yrityksiä ja muita yhteisöjä varten voidaan järjestää neuvontaa.

Teknologiat ja standardit

Big datan teknologisia kehitystarpeita on tunnistettu olevan mm. datan varastoinnin tekniset standardit, datan välittämisen ja integroinnin tavat. Teknologiakohtaisia ekosysteemejä on syntymässä, joten näiden ymmärtäminen ja sovittaminen omaan kehitysympäristöön on olennaista. Datan käsittelyn ja hallinnoinnin harmonisointi edistäisi datan yhteen toimivuutta ja siten käyttöä. On huomattava, että dataan liittyviä standardeja (esim INSPIRE, PSI) on jo olemassa, joten näitä voidaan hyödyntää ja soveltaa myös big dataan.

Tunnistetaan keskeiset standardointiprosessit joissa tulee olla mukana sekä organisoidutaan toimimaan näissä

Standardien luominen erityisesti datan varastointiin (storage) ja siirtoon (exchange) kehittää datan käsittelyn tekniikoita, työskentelymetodeja ja tehokkaita algoritmeja.

Tietosuoja ja yksityisyys on myös teknologinen kehityskysymys. Panostetaan tieto/yksityisyydensuojan ratkaisujen teknologiakehitykseen (esim. Tekes)

Infrastruktuuri

Big datan hyödyntäminen vaatii korkealuokkaista tieto- ja viestintäinfrastruktuuria. Varmistetaan, että perusedellytykset, kuten viestintä- ja tiedonsiirtoyhteydet, pilvikapasiteetti yms. ovat kansainvälistä huipputasoa ja ennakoidaan tarpeita infrastuktuurin osalta niin yksittäisen toimijan kuin yhteishankkeiden/toiminnan kannalta.

Keskeisten kansallisten toimijoiden tunnistaminen ja organisointimallin luominen on tarpeen myös infrastruktuurin kehittämistä ohjaamaan. Infrastruktuurikoordinaation tehtävä on hakea tehokuutta ja yhteentoimivuutta.

Kansainvälisesti hyvänä esimerkkinä voidaan verrata Open Cloud Massachusettsin toimintatapaa ja datapalvelujen ”biotope”-ajattelua sekä UK:n ODI toimintaa muun muassa datasovellusten edistäjänä ja datan saatavuuden kehittäjänä.

Jaettujen infrastruktuurien kehittämistä tehdään tarpeiden mukaan ja ne voivat tarkoittaa esimerkiksi: - Tiedonkäsittely- ja laskentainfrastruktuurien kehittämistä - Yhteisiä datan hallintasysteemejä ylläpitoon ja laadunvarmistukseen - T&k-yhteistyön ja arvioinnin kehittämistä erilaisista analyysimenetelmistä - Datapalvelujen ekosysteemin luontia, kuten datan jakelupisteet, kauppapaikat ja julkaisukirjastot sekä datasovellusten edistäjärooli - Kokeilulaboratorio, jossa voidaan testata teknologioita ilman omaa mittavaa panostusta

Kehitetään kansallista big data infrastuktuuria verkostomaisella yhteistyöllä


Paluu pääsivulle Big_Data_-strategia