Ero sivun ”Vaikutukset akvaattisiin altistujiin” versioiden välillä
Ei muokkausyhteenvetoa |
Ei muokkausyhteenvetoa |
||
Rivi 5: | Rivi 5: | ||
'''Hydrologia''' | '''Hydrologia''' | ||
Hydrologiset suureet kuten virtaama (max ja min), veden korkeus ja lämpötila vaihtelevat luontaisesti vuodenajan mukaan ja säätelevät eliöiden elinkiertoa. Suuret tai vuodenaikaan nähden epätavalliset muutokset hydrologiassa voivat esimerkiksi vaikuttaa kalojen kudun epäonnistumiseen tai virtavesien pohjaeläinyhteisöjen rakenteeseen. Alueen kalalajiston ekologinen tuntemus yhdistettynä hankevaihtoehtojen hydrologiaan antaa tärkeää tietoa lajiston elinmahdollisuuksista muuttuvissa oloissa | Hydrologiset suureet kuten virtaama (max ja min), veden korkeus ja lämpötila vaihtelevat luontaisesti vuodenajan mukaan ja säätelevät eliöiden elinkiertoa. Suuret tai vuodenaikaan nähden epätavalliset muutokset hydrologiassa voivat esimerkiksi vaikuttaa kalojen kudun epäonnistumiseen tai virtavesien pohjaeläinyhteisöjen rakenteeseen. Alueen kalalajiston ekologinen tuntemus yhdistettynä hankevaihtoehtojen hydrologiaan antaa tärkeää tietoa lajiston elinmahdollisuuksista muuttuvissa oloissa. Hydrologian lisäksi kaivostoiminnasta mahdollisesti muuttuva happamuus (pH), lisääntynyt ravinteiden (mm. typpiyhdisteet) ja kiintoaineksen määrä voivat aiheuttaa veden laadun ja habitaattien heikkenemistä. Ravinteiden kierron häiriintymiseen ja rehevöitymiseen voi löytyä selitys räjähdeaineiden typpiyhdisteiden lisäksi sulfaatista, joka voi häiritä rautayhdisteiden fosforin sidontaa (Lehtoranta & Ekholm xxxx). Kalaston osalta veden laadun arviointiin ohjaa ns. kaladirektiivi (2006/44/EY) ja muun eliöstön osalta VHSn ekologinen luokittelu ja sen menetelmät (viitteet). | ||
Pohjaveden laadun muuttuminen voi myös vaikuttaa pintavesien laatuun, joka näkyy erityisesti lähteiden eliöstössä ja muiden vesimuodostumien pohjaveden purkautumispaikkojen läheisyydessä. Lähteiden poikkeava elinympäristö ylläpitää vaateliasta ja usein harvinaista lajistoa, joka on sopeutunut hyvin tasalaatuisiin olosuhteisiin. Eliöyhteisön palautuminen häiriöistä eristyneisyyden takia on myös hyvin vaikeaa. Näiden habitaattien riskinarviointi vaatii tarkempaa taustaselvitystä vedenlaadusta ja eliöstöstä, jotta muutosten arvioiminen on varmalla pohjalla. | |||
'''Haitta-ainepitoisuudet ja ympäristölaatunormit''' | '''Haitta-ainepitoisuudet ja ympäristölaatunormit''' | ||
Rivi 13: | Rivi 13: | ||
Merkittävät muutokset vastaan ottavan veden laadussa ovat usein mitattavissa erilaisten liuenneiden haitta-aineiden pitoisuuksina. Erityisesti sulfidimetallimalmituotannossa on tyypillistä metalli- ja sulfaattipitoisten vesien muodostuminen. Tausta-arvoihin nähden pitoisuuksien ''merkittävät muutokset'' ovat todennäköisesti haitallisia eliöille sillä annos tekee aineesta kuin aineesta haitallisen. Tätä pitoisuuden ''merkittävää muutosta'' on vaikea määrittää ja sitä voidaan lähestyä yksinkertaisesti vertaamalla eri hankevaihtoehtojen arvioituja ympäristöpitoisuuksia (PEC) arvioituun haitattomaan ympäristöpitoisuuteen (PNEC) (Kauppila ym. 2013, s.200). Valitettavasti vain osalle kaivospäästöissä esiintyvistä aineista on määritelty eurooppalaisia ympäristölaatunormeja eli haitattomia pitoisuuksia, jotka suojelevat ympäristöä. Vesiympäristössä haitallisille aineille on annettu ympäristölaatunormeja asetuksissa (1022/2006, 868/2010 ja direktiiveissä (2008/105/EY, 2013/39/EY), joihin hankevaihtoehdoissa arvioituja pitoisuuksia on syytä verrata. Haitta-aineiden luonnolliset, paikkakohtaiset taustapitoisuudet voidaan myös ottaa huomioon raja-arvojen määrittelyssä (Verta et al. 2010) mikä korostaa taustaselvityksen tärkeyden merkitystä. On hyvin todennäköistä, että kaivostoimintaan suunnitellun alueen geologia aiheuttaa valtakunnallisia keskiarvoja suurempia metallipitoisuuksia paikallisiin vesistöihin, erityisesti puroihin. | Merkittävät muutokset vastaan ottavan veden laadussa ovat usein mitattavissa erilaisten liuenneiden haitta-aineiden pitoisuuksina. Erityisesti sulfidimetallimalmituotannossa on tyypillistä metalli- ja sulfaattipitoisten vesien muodostuminen. Tausta-arvoihin nähden pitoisuuksien ''merkittävät muutokset'' ovat todennäköisesti haitallisia eliöille sillä annos tekee aineesta kuin aineesta haitallisen. Tätä pitoisuuden ''merkittävää muutosta'' on vaikea määrittää ja sitä voidaan lähestyä yksinkertaisesti vertaamalla eri hankevaihtoehtojen arvioituja ympäristöpitoisuuksia (PEC) arvioituun haitattomaan ympäristöpitoisuuteen (PNEC) (Kauppila ym. 2013, s.200). Valitettavasti vain osalle kaivospäästöissä esiintyvistä aineista on määritelty eurooppalaisia ympäristölaatunormeja eli haitattomia pitoisuuksia, jotka suojelevat ympäristöä. Vesiympäristössä haitallisille aineille on annettu ympäristölaatunormeja asetuksissa (1022/2006, 868/2010 ja direktiiveissä (2008/105/EY, 2013/39/EY), joihin hankevaihtoehdoissa arvioituja pitoisuuksia on syytä verrata. Haitta-aineiden luonnolliset, paikkakohtaiset taustapitoisuudet voidaan myös ottaa huomioon raja-arvojen määrittelyssä (Verta et al. 2010) mikä korostaa taustaselvityksen tärkeyden merkitystä. On hyvin todennäköistä, että kaivostoimintaan suunnitellun alueen geologia aiheuttaa valtakunnallisia keskiarvoja suurempia metallipitoisuuksia paikallisiin vesistöihin, erityisesti puroihin. | ||
EU alueen ympäristölainsäädännön rajallisuuden vuoksi puuttuvien aineiden raja-arvoihin voidaan etsiä apua muiden maiden viranomaisten ohjeistuksesta. Esimerkiksi Yhdysvaltojen (US EPA, viite), Kanadan (CCEM, viite) ja Australian sekä Uuden Seelannin (ANZECC, viite) pintavesille on säädetty laatunormeja | EU alueen ympäristölainsäädännön rajallisuuden vuoksi puuttuvien aineiden raja-arvoihin voidaan etsiä apua muiden maiden viranomaisten ohjeistuksesta. Esimerkiksi Yhdysvaltojen (US EPA, viite), Kanadan (CCEM, viite) ja Australian sekä Uuden Seelannin (ANZECC, viite) pintavesille on säädetty laatunormeja. Haitattomia pitoisuuksia löytyy myös Euroopan kemikaaliviraston (http://echa.europa.eu/fi/information-on-chemicals/registered-substances) sekä Yhdysvaltain ympäristönsuojelutoimiston (http://cfpub.epa.gov/ecotox) aineistoista.Tärkeää on kuitenkin huomata, että vesien luontaiset ominaisuudet voivat poiketa huomattavsti suomalaisista vesistä mikä vaikuttaa metallien haitallisuuteen esimerkiksi kovuuden kautta. Tietolähteenä voidaan myös käyttää suoraan tieteellistä kirjallisuutta, joka voi auttaa harvinaisempien aineiden kuten suolojen haitallisuuden arvioimisessa. Esimerkiksi sulfaatin ja magnesiumin haitallisia pitoisuuksia on tutkittu Australiassa suomalaistyyppisissä pehmeissä vesissä (van Dam ym. 2010). | ||
Haitta-aineiden riskinarviointi perustuu pääasiassa pitkäaikaisvaikutusten arvioimiseen ja ympäristölaatunormit pohjautuvat usein kroonisiin, eliöyhteisön kasvua, lisääntymistä yms. mittaaviin suureisiin. Näin ollen ympäristölaatunormit ja haitattomat pitoisuudet ovat pitoisuuksia, jotka ovat suojelevia eliön koko elinkaaren ajan. Päästöissä voi kuitenkin olla esimerkiksi vuodenaikaan sidottuja pulsseja, jolloin ympäristön pitoisuudet kohoavat tilapäisesti huomattavasti. EU:n ympäristölaatunormidirektiiveissä raja-arvoja on annettu sekä vuoden keskiarvona (AA-EQS) että maksimi pitoisuuksina (MAC-EQS). Kaivotoiminnan vesitase on siis syytä ottaa huomioon ekologisessa riskinarvioimisessa ja pohtia päästöjen keston suhdetta kohteena olevan eliöyhteisön elinkierron kestoon. Esimerkiksi, kuukausi kattaa levillä monta sukupolvea. | Haitta-aineiden riskinarviointi perustuu pääasiassa pitkäaikaisvaikutusten arvioimiseen ja ympäristölaatunormit pohjautuvat usein kroonisiin, eliöyhteisön kasvua, lisääntymistä yms. mittaaviin suureisiin. Näin ollen ympäristölaatunormit ja haitattomat pitoisuudet ovat pitoisuuksia, jotka ovat suojelevia eliön koko elinkaaren ajan. Päästöissä voi kuitenkin olla esimerkiksi vuodenaikaan sidottuja pulsseja, jolloin ympäristön pitoisuudet kohoavat tilapäisesti huomattavasti. EU:n ympäristölaatunormidirektiiveissä raja-arvoja on annettu sekä vuoden keskiarvona (AA-EQS) että maksimi pitoisuuksina (MAC-EQS). Kaivotoiminnan vesitase on siis syytä ottaa huomioon ekologisessa riskinarvioimisessa ja pohtia päästöjen keston suhdetta kohteena olevan eliöyhteisön elinkierron kestoon. Esimerkiksi, kuukausi kattaa levillä monta sukupolvea. | ||
'''Vedenlaatu ja metallien myrkyllisyys''' | '''Vedenlaatu ja metallien myrkyllisyys''' | ||
Vedenlaatutekijät vaikuttavat merkittävästi metallien biosaatavuuteen ja myrkyllisyyteen. Liuennut orgaaninen hiili (DOC) sitoo metalli-ioneja ja toisaalta veden vapaat protonit (H+), kalsium ja magnesium kilpailevat metalli-ionien kanssa sitoutumisesta eliöön. Ilmiöitä käytetään hyväksi Biotic Ligand malleissa (BLM), joiden avulla voidaan määrittää paikallinen haitallinen tai haitaton pitoisuus, joka perustuu vapaan metalli-ionin eli biosaatavan määrän laskemiseen. Uusimmassa ympäristölaatunormidirektiivissä (2013/39/EY) nikkelin ja lyijyn vuosikeskiarvot (AA-EQS) on ilmoitettu biosaatavana metallina. Nikkelin osalle onkin kehitetty yksinkertainen BLM-malli (http://bio-met.net) direktiivin soveltamiseksi. Helppokäyttöisiä BLM-malleja on saataville useille metalleille, esimerkiksi Bio-Met malli sisältää myös kuparin ja sinkin paikallisen kroonisen EQS arvon laskualgoritmin. Akuuteille vasteille kehitetty HydroQual Inc. BLM-malli (http://hydroqual.com/wr_BLM) laskee kadmiumille, sinkille, kuparille ja lyijylle vesipitoisuuden, jossa puolet mallilajista kuolee. Sitä voidaan siis käyttää arvioimaan hetkellisten, korkeiden päästöjen haitallisuutta. Koska vedenlaadulla on suuri merkitys metallien sitoutumiseen ja myrkyllisyyteen, jo YVA-vaiheessa on syytä selvittää paikallisen vedenlaadun vaikutus metallien jakautumiseen vedessä ja sitä kautta vaikutus paikalliseen ympäristölaatunormiin. | Vedenlaatutekijät vaikuttavat merkittävästi metallien biosaatavuuteen ja myrkyllisyyteen. Liuennut orgaaninen hiili (DOC) sitoo metalli-ioneja ja toisaalta veden vapaat protonit (H+), kalsium ja magnesium kilpailevat metalli-ionien kanssa sitoutumisesta eliöön. Ilmiöitä käytetään hyväksi Biotic Ligand malleissa (BLM), joiden avulla voidaan määrittää paikallinen haitallinen tai haitaton pitoisuus, joka perustuu vapaan metalli-ionin eli biosaatavan määrän laskemiseen. Uusimmassa ympäristölaatunormidirektiivissä (2013/39/EY) nikkelin ja lyijyn vuosikeskiarvot (AA-EQS) on ilmoitettu biosaatavana metallina. Nikkelin osalle onkin kehitetty yksinkertainen BLM-malli (http://bio-met.net) direktiivin soveltamiseksi. Lyijyn kohdalla määritys perustuu DOC-korjaukseen (EU 2014) mutta BLM-mallikin on kehitteillä. Helppokäyttöisiä BLM-malleja on saataville useille metalleille, esimerkiksi Bio-Met malli sisältää myös kuparin ja sinkin paikallisen kroonisen EQS arvon laskualgoritmin. Akuuteille vasteille kehitetty HydroQual Inc. BLM-malli (http://hydroqual.com/wr_BLM) laskee kadmiumille, sinkille, kuparille ja lyijylle vesipitoisuuden, jossa puolet mallilajista kuolee. Sitä voidaan siis käyttää arvioimaan hetkellisten, korkeiden päästöjen haitallisuutta. Tieteellisestä kirjallisuudesta löytyy lajikohtaisia ns. "full” BLM-malleja monille metalleille mutta niiden soveltamisessa tarvitaan usein laajempaa vedenlaatuaineistoa sekä myös spesiaatiomallien (esim. WHAM) käyttöä (esim. Schlekat ym 2010). Koska vedenlaadulla on suuri merkitys metallien sitoutumiseen ja myrkyllisyyteen, jo YVA-vaiheessa on syytä selvittää paikallisen vedenlaadun vaikutus metallien jakautumiseen vedessä ja sitä kautta vaikutus paikalliseen ympäristölaatunormiin. | ||
Tekstiä lisätty pe 11.4. klo 14:15 | Tekstiä lisätty pe 11.4. klo 14:15 | ||
Rivi 37: | Rivi 36: | ||
Direktiivi 2013/39/EY. Direktiivien 2000/60/EY ja 2008/105/EY muuttamisesta vesipolitiikan alan prioriteettiaineiden osalta. | Direktiivi 2013/39/EY. Direktiivien 2000/60/EY ja 2008/105/EY muuttamisesta vesipolitiikan alan prioriteettiaineiden osalta. | ||
EU 2014: Technical guidance to implement bioavailability-based environmental quality standards for metals. Draft. March 2014. | |||
Hämäläinen H. 1999. Critical appraisal of the indexes of Chironomid larval deformities and their use in bioindication. Ann. Zool. Fennici 36:179-186. | Hämäläinen H. 1999. Critical appraisal of the indexes of Chironomid larval deformities and their use in bioindication. Ann. Zool. Fennici 36:179-186. | ||
Rivi 44: | Rivi 45: | ||
Lehtoranta ja Ekholm 2013: Vesitalous. | Lehtoranta ja Ekholm 2013: Vesitalous. | ||
Schlekat CE, Van Genderen E, De Scamphelaere, Antunes PMC, Rogevich EC ja Stubblefield WA 2010: Cross-species extrapolation of chronic nickel Bioric Ligand Models- Sci. Tot. Environ. 408:6148-6157. | |||
Valtioneuvoston asetus 1022/2006. Vesiympäristölle vaarallisista ja haitallisista aineista. | Valtioneuvoston asetus 1022/2006. Vesiympäristölle vaarallisista ja haitallisista aineista. |
Versio 11. huhtikuuta 2014 kello 12.01
Tähän hankkeeseen kuuluvia sivuja | Hankkeen etusivu · Sisällysluettelo · Ohjeita kirjoittajille · Hyviä käytäntöjä kaivoshankkeiden ympäristövaikutusten arvioinnissa (tämän hankkeen tuottama lopullinen opas) |
Muita kaivostoimintaan liittyviä sivuja | Minera-malli · Hyvä kaivos pohjoisessa · Metallimalmikaivostoiminnan parhaat ympäristökäytännöt · Ympäristövaikutusten arviointimenettely kaivoshankkeissa · Teemasivu:Kaivostoiminta |
Sivun aiheeseen liittyviä muita sivuja |
Vesi on keskeisessä roolissa kaivostoiminnassa ja usein vesitaseen hallinta vaatii päästöjä kaivospiirin ulkopuolelle. Eliöyhteisön kannalta oleellista on tunnistaa muutoksen voimakkuus ja dynamiikka.----#: . Pitäisikö tätä seuraavaa juttua jotenkin siirtää Osaan 3, typistää tästä ja viitata sitten sinne aiempaan tekstiin? --Tommi Kauppila (keskustelu) 11. huhtikuuta 2014 kello 13.14 (EEST) (type: truth; paradigms: science: comment) Taustaselvityksen tehtävänä on muodostaa käsitys normaaleista haitta-aineiden taustapitoisuuksista vedessä, sedimentissä ja eliöissä, hydrologian ja veden kemian vuodenaikaisvaihtelusta sekä herkkien tai mahdollisesti suojelulistoilla olevien eliöiden tai habitaattien läsnäolosta. Perusteellisissa arvioissa ja laaja-alaisissa hankkeissa vaikutusten yhtenä ekologisena mittarina voidaan myös käyttää eliöiden morfologisten vaurioiden ilmenemistä (Vuori 2002, Hämäläinen 1999) vertailemalla taustatilannetta toiminnan aikaisiin tuloksiin. Kirjallisuustietojen puuttuessa tai ollessa vaillinaisia on suositeltavaa tehdä paikallisia mittauksia vedenlaadun muuttujista ja hydrologiasta sekä luontoselvityksiä. Mitä tarkemmat taustaselvitykset tehdään, sitä varmemmalla pohjalla on muutosten ja niiden vaikutusten arviointi.
Hydrologia
Hydrologiset suureet kuten virtaama (max ja min), veden korkeus ja lämpötila vaihtelevat luontaisesti vuodenajan mukaan ja säätelevät eliöiden elinkiertoa. Suuret tai vuodenaikaan nähden epätavalliset muutokset hydrologiassa voivat esimerkiksi vaikuttaa kalojen kudun epäonnistumiseen tai virtavesien pohjaeläinyhteisöjen rakenteeseen. Alueen kalalajiston ekologinen tuntemus yhdistettynä hankevaihtoehtojen hydrologiaan antaa tärkeää tietoa lajiston elinmahdollisuuksista muuttuvissa oloissa. Hydrologian lisäksi kaivostoiminnasta mahdollisesti muuttuva happamuus (pH), lisääntynyt ravinteiden (mm. typpiyhdisteet) ja kiintoaineksen määrä voivat aiheuttaa veden laadun ja habitaattien heikkenemistä. Ravinteiden kierron häiriintymiseen ja rehevöitymiseen voi löytyä selitys räjähdeaineiden typpiyhdisteiden lisäksi sulfaatista, joka voi häiritä rautayhdisteiden fosforin sidontaa (Lehtoranta & Ekholm xxxx). Kalaston osalta veden laadun arviointiin ohjaa ns. kaladirektiivi (2006/44/EY) ja muun eliöstön osalta VHSn ekologinen luokittelu ja sen menetelmät (viitteet).
Pohjaveden laadun muuttuminen voi myös vaikuttaa pintavesien laatuun, joka näkyy erityisesti lähteiden eliöstössä ja muiden vesimuodostumien pohjaveden purkautumispaikkojen läheisyydessä. Lähteiden poikkeava elinympäristö ylläpitää vaateliasta ja usein harvinaista lajistoa, joka on sopeutunut hyvin tasalaatuisiin olosuhteisiin. Eliöyhteisön palautuminen häiriöistä eristyneisyyden takia on myös hyvin vaikeaa. Näiden habitaattien riskinarviointi vaatii tarkempaa taustaselvitystä vedenlaadusta ja eliöstöstä, jotta muutosten arvioiminen on varmalla pohjalla.
Haitta-ainepitoisuudet ja ympäristölaatunormit
Merkittävät muutokset vastaan ottavan veden laadussa ovat usein mitattavissa erilaisten liuenneiden haitta-aineiden pitoisuuksina. Erityisesti sulfidimetallimalmituotannossa on tyypillistä metalli- ja sulfaattipitoisten vesien muodostuminen. Tausta-arvoihin nähden pitoisuuksien merkittävät muutokset ovat todennäköisesti haitallisia eliöille sillä annos tekee aineesta kuin aineesta haitallisen. Tätä pitoisuuden merkittävää muutosta on vaikea määrittää ja sitä voidaan lähestyä yksinkertaisesti vertaamalla eri hankevaihtoehtojen arvioituja ympäristöpitoisuuksia (PEC) arvioituun haitattomaan ympäristöpitoisuuteen (PNEC) (Kauppila ym. 2013, s.200). Valitettavasti vain osalle kaivospäästöissä esiintyvistä aineista on määritelty eurooppalaisia ympäristölaatunormeja eli haitattomia pitoisuuksia, jotka suojelevat ympäristöä. Vesiympäristössä haitallisille aineille on annettu ympäristölaatunormeja asetuksissa (1022/2006, 868/2010 ja direktiiveissä (2008/105/EY, 2013/39/EY), joihin hankevaihtoehdoissa arvioituja pitoisuuksia on syytä verrata. Haitta-aineiden luonnolliset, paikkakohtaiset taustapitoisuudet voidaan myös ottaa huomioon raja-arvojen määrittelyssä (Verta et al. 2010) mikä korostaa taustaselvityksen tärkeyden merkitystä. On hyvin todennäköistä, että kaivostoimintaan suunnitellun alueen geologia aiheuttaa valtakunnallisia keskiarvoja suurempia metallipitoisuuksia paikallisiin vesistöihin, erityisesti puroihin.
EU alueen ympäristölainsäädännön rajallisuuden vuoksi puuttuvien aineiden raja-arvoihin voidaan etsiä apua muiden maiden viranomaisten ohjeistuksesta. Esimerkiksi Yhdysvaltojen (US EPA, viite), Kanadan (CCEM, viite) ja Australian sekä Uuden Seelannin (ANZECC, viite) pintavesille on säädetty laatunormeja. Haitattomia pitoisuuksia löytyy myös Euroopan kemikaaliviraston (http://echa.europa.eu/fi/information-on-chemicals/registered-substances) sekä Yhdysvaltain ympäristönsuojelutoimiston (http://cfpub.epa.gov/ecotox) aineistoista.Tärkeää on kuitenkin huomata, että vesien luontaiset ominaisuudet voivat poiketa huomattavsti suomalaisista vesistä mikä vaikuttaa metallien haitallisuuteen esimerkiksi kovuuden kautta. Tietolähteenä voidaan myös käyttää suoraan tieteellistä kirjallisuutta, joka voi auttaa harvinaisempien aineiden kuten suolojen haitallisuuden arvioimisessa. Esimerkiksi sulfaatin ja magnesiumin haitallisia pitoisuuksia on tutkittu Australiassa suomalaistyyppisissä pehmeissä vesissä (van Dam ym. 2010).
Haitta-aineiden riskinarviointi perustuu pääasiassa pitkäaikaisvaikutusten arvioimiseen ja ympäristölaatunormit pohjautuvat usein kroonisiin, eliöyhteisön kasvua, lisääntymistä yms. mittaaviin suureisiin. Näin ollen ympäristölaatunormit ja haitattomat pitoisuudet ovat pitoisuuksia, jotka ovat suojelevia eliön koko elinkaaren ajan. Päästöissä voi kuitenkin olla esimerkiksi vuodenaikaan sidottuja pulsseja, jolloin ympäristön pitoisuudet kohoavat tilapäisesti huomattavasti. EU:n ympäristölaatunormidirektiiveissä raja-arvoja on annettu sekä vuoden keskiarvona (AA-EQS) että maksimi pitoisuuksina (MAC-EQS). Kaivotoiminnan vesitase on siis syytä ottaa huomioon ekologisessa riskinarvioimisessa ja pohtia päästöjen keston suhdetta kohteena olevan eliöyhteisön elinkierron kestoon. Esimerkiksi, kuukausi kattaa levillä monta sukupolvea.
Vedenlaatu ja metallien myrkyllisyys
Vedenlaatutekijät vaikuttavat merkittävästi metallien biosaatavuuteen ja myrkyllisyyteen. Liuennut orgaaninen hiili (DOC) sitoo metalli-ioneja ja toisaalta veden vapaat protonit (H+), kalsium ja magnesium kilpailevat metalli-ionien kanssa sitoutumisesta eliöön. Ilmiöitä käytetään hyväksi Biotic Ligand malleissa (BLM), joiden avulla voidaan määrittää paikallinen haitallinen tai haitaton pitoisuus, joka perustuu vapaan metalli-ionin eli biosaatavan määrän laskemiseen. Uusimmassa ympäristölaatunormidirektiivissä (2013/39/EY) nikkelin ja lyijyn vuosikeskiarvot (AA-EQS) on ilmoitettu biosaatavana metallina. Nikkelin osalle onkin kehitetty yksinkertainen BLM-malli (http://bio-met.net) direktiivin soveltamiseksi. Lyijyn kohdalla määritys perustuu DOC-korjaukseen (EU 2014) mutta BLM-mallikin on kehitteillä. Helppokäyttöisiä BLM-malleja on saataville useille metalleille, esimerkiksi Bio-Met malli sisältää myös kuparin ja sinkin paikallisen kroonisen EQS arvon laskualgoritmin. Akuuteille vasteille kehitetty HydroQual Inc. BLM-malli (http://hydroqual.com/wr_BLM) laskee kadmiumille, sinkille, kuparille ja lyijylle vesipitoisuuden, jossa puolet mallilajista kuolee. Sitä voidaan siis käyttää arvioimaan hetkellisten, korkeiden päästöjen haitallisuutta. Tieteellisestä kirjallisuudesta löytyy lajikohtaisia ns. "full” BLM-malleja monille metalleille mutta niiden soveltamisessa tarvitaan usein laajempaa vedenlaatuaineistoa sekä myös spesiaatiomallien (esim. WHAM) käyttöä (esim. Schlekat ym 2010). Koska vedenlaadulla on suuri merkitys metallien sitoutumiseen ja myrkyllisyyteen, jo YVA-vaiheessa on syytä selvittää paikallisen vedenlaadun vaikutus metallien jakautumiseen vedessä ja sitä kautta vaikutus paikalliseen ympäristölaatunormiin.
Tekstiä lisätty pe 11.4. klo 14:15
Puuttuu vielä:
Sedimentin rooli Virhetarkastelu eli yhteisvaikutukset yms.
Direktiivi 2006/44/EY. Suojelua ja parantamista edellyttävien makeiden vesien laadusta kalojen elämän turvaamiseksi.
Direktiivi 2008/105/EY. Ympäristölaatunormeista vesipolitiikan alalla.
Direktiivi 2013/39/EY. Direktiivien 2000/60/EY ja 2008/105/EY muuttamisesta vesipolitiikan alan prioriteettiaineiden osalta.
EU 2014: Technical guidance to implement bioavailability-based environmental quality standards for metals. Draft. March 2014.
Hämäläinen H. 1999. Critical appraisal of the indexes of Chironomid larval deformities and their use in bioindication. Ann. Zool. Fennici 36:179-186.
Kauppila ym. 2013. MINERA-hankkeen loppuraportti.
Lehtoranta ja Ekholm 2013: Vesitalous.
Schlekat CE, Van Genderen E, De Scamphelaere, Antunes PMC, Rogevich EC ja Stubblefield WA 2010: Cross-species extrapolation of chronic nickel Bioric Ligand Models- Sci. Tot. Environ. 408:6148-6157.
Valtioneuvoston asetus 1022/2006. Vesiympäristölle vaarallisista ja haitallisista aineista.
Valtioneuvoston asetus 868/2010. Vesiympäristölle vaarallisista ja haitallisista aineista annetun valtioneuvoston asetuksen muuttamisesta.
Van Dam ym. 2010. Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water. Environ. Toxicol. Chem. 29: 410-421.
Verta M et al. 2010: Metallien taustapitoisuudet ja haitallisten aineiden seuranta Suomen pintavesissä. Suomen ympäristökeskuksen raportteja 12/2010. 35 s + 4 liitettä.
Vuori, K-M. 2002. Vesisammal- ja vesiperhostoukkamenetelmät jokivesistöjen haitallisten aineiden riskinarvioinnissa ja seurannassa. Suomen ympäristö nro 571, Länsi-Suomen ympäristökeskus. 89 s.