Ero sivun ”Big Data -strategia” versioiden välillä
Rivi 32: | Rivi 32: | ||
==== Datatietoisuus ==== | ==== Datatietoisuus ==== | ||
Nykyaikaisen analytiikan ja big datan omaksuminen osaksi jokapäiväistä työtä on keskeinen askel kohti tiedolla johtamisen yrityskulttuuria. Uuden teknologian ja prosessointikapasiteetin kustannusrakenteiden jatkuva kehitys vaatii omien kyvykkyyksien säännöllistä uudelleentarkastelua. Se mikä datan tarkastelussa vuosi sitten oli mahdotonta tai kannattamatonta, voi tänään olla varsin perusteltua ja liiketoiminnallisesti kannattavaksi todistettavaa. Samalla budjetilla voidaan ensi vuonna jälleen tarkastella laajempaa datamassaa, etsien tarkempia signaaleja, uusia toimintamahdollisuuksia ja aiemmin tunnistamattomia optimointikohteita. Tämä sykli toistuu yhä uudelleen ja organisaatioiden onkin opittava kyseenalaistamaan vanhat datan tarkastelun rajat ja kiinnittämään tarkemmin huomiota uusien lähteiden syntyyn. On tultava datatietoiseksi. | |||
Perinteisesti organisaatiot ovat tottuneet tarkastelemaan oman liiketoimintansa tuottamaa dataa. Ja siitäkin erityisesti esivalittua osajoukkoa, liiketoiminnan ydintietoa. Tämä tieto on kerättynä erilaisissa perusjärjestelmissä (ERP, CRM, CMS) ja sekä datan tuntemus että sen analysointiin käytettyjen välineiden osaaminen on vahvaa. Big datan huomiointi tässä kontekstissa tarkoittaa datan keräämisen laajuuden tarkastelua. Jos perusjärjestelmien lokitasot, tapahtumien kirjaaminen tai tapahtumien sisällön laajuus on aiemmin rajoitettu tallennus- ja prosessointikapasiteetin kustannusten perusteella, voidaan näitä arvioida uudelleen nykyisen kustannusrakenteen ja kapasiteetin myötä. Ydinliiketoimintaa on myös syytä tarkastella säännöllisesti uudelleen tiedonkeräämisen potentiaalin näkökulmasta. Onko aiempi analytiikka tai toiminnan tarkastelu nostanut esiin asioita, joissa datan kerääminen ei ole riittävällä tasolla? Voitaisiinko tuota tunnistettua, kiinnostavaa dataa kerätä tuomalla järjestelmiin uusia ominaisuuksia tai toimintaympäristöön esimerkiksi erilaisia sensoreita? Näihin mahdollisuuksiin tarttuminen kartuttaa oman liiketoiminnan tuottamaa datavarantoa entisestään ja saattaa nostaa big datan teknologioiden omaksumisen varsin ajankohtaiseksi. | |||
Datatietoinen organisaatio ei kuitenkaan rajoita tiedonjanoaan ainoastaan omien järjestelmien keräämään dataan, vaan katsoo ympäröivää ekosysteemiä laajemmin. Datan mahdollisuuksia on syytä arvioida kumppaniverkoston kanssa, tunnistaen synergioita, datan vaihdon mahdollisuuksia tai jopa uuden liiketoiminnan perustamisen potentiaalia datavarantojen yhdistämisen myötä. | |||
Data rinnastetaan useissa puheissa nykyisin luonnonvaroihin, joten sille syntyy luonnollisesti myös arvo kauppatavarana. Tämän ilmiön myötä datan kerääminen ja koostaminen on synnyttänyt ja synnyttää edelleen uusia toimijoita markkinoille. Näiden datakauppiaiden toiminta puolestaan esiintyy joko yksittäisinä palveluina tai koostettuna datan markkinapaikoille. Kysyntä ja tarjonta määrittävät ennen pitkää erilaisen datan arvon, aivan kuten muillakin luonnonvaroilla. Nykyaikainen, datatietoinen organisaatio huomioi myös nämä kaupalliset datavarannot arvioidessaan liiketoimintansa datavetoista kehitystä. | |||
Kolmas näkökulma saatavilla olevaan dataan on avoin data. Sekä EU-tason että kansallinen lainsäädäntö ohjaa erityisesti julkishallinnon dataa voimakkaasti kohti avoimuutta. Tulevaisuudessa kansallisin varoin kerättyä, varsin arvokasta dataa on paljon saatavilla ja hyödynnettävissä edelleen liiketoiminnan kehityksessä. Avoimen datan kulttuurin kehitys vetää mukanaan myös yksityisiä ja kaupallisia toimijoita, joiden intresseissä on avata dataansa julkisuus- ja goodwill-tarkoituksissa sekä vauhdittaakseen oman erityisosaamisalueensa kehitystä. Organisaatioiden onkin syytä ottaa mukaan kokonaisvaltaiseen data-strategiaansa myös avoin data ja sen erilaiset mahdollisuudet. Hyötyjä on tunnistettavissa sekä avoimen datan kuluttajana että tuottajana. | |||
Kansallisessa big data -strategiassa avoimen datan kehitys on yksi keskeisistä teemoista. Nykyaikainen suhtautuminen datan avaamiseen, lainsäädännön kehitykseen reagointinopeus ja tiedon jakamisen kulttuurin kehitys luovat myös kansallista pääomaa ja auttavat Suomea toimimaan esimerkkimaana. Kokemukset avoimen datan päätöksistä, käytännön toteutuksista ja vaikutuksista liiketoimintakenttään ovat lähitulevaisuudessa haluttua pääomaa. Parhaiden käytäntöjen tuotteistaminen voi luoda myös hyvää tukea suomalaisen osaamisen vientiin ja vauhdittaa osaltaan talouskasvua. | |||
==== Kokeilut/t&krahoituksen suuntaaminen ==== | ==== Kokeilut/t&krahoituksen suuntaaminen ==== | ||
Versio 6. huhtikuuta 2014 kello 14.18
Johdanto
Tämä on big data- strategian kirjoituswikisivusto
Ohjeistusta edellytys- ja sovellusalueista kirjoittamiseen: Kirjoita
1) kuvausta kyseisestä teemasta, sen nykytilasta, esimerkkejä ja perustelua siitä, miksi tämä meille olennaista 2) ideoita toimenpiteiksi, joita tämän teeman kehittämiseksi tarvitaan (strategian toimenpideosio kootaan myöhemmin näistä)
Big Data
Yhteisesti jaettua ja täysin yksiselittäistä määrittelyä ei termille ole. Useimmiten käytetään kolmen V:n määritelmää, jolla viitataan sekä datan määrään (volume),syntyvauhtiin (velocity) sekä erilaiseen, struktoroimattomaan dataan (variety). Eri näkökulmista, muun muassa eri palveluntarjoajien määritelmissä, painotetaan ilmiön eri puolia. Esimerkikisi Intel määrittelee big datan puhtaasti koon (mediaaniarvona 300tb dataa viikottain), Microsoft lähestyy asiaa analyysin vaadittavien monimutkaisten menetelmien kautta. Lisäksi termiä voitaisiin lähestyä myös analyysiin käytettävien työkalujen kautta . (Mm. Hadoop)
Big dataan törmää nykyään joka puolella. Termi on nykyään jatkuvasti esillä myös mediassa ja julkisuudessa. Osittain kyse on myös termin ja ilmiön ympärillä olevasta hypestä, big dataan liittyy äärimmäisen suuria odotuksia ja toisaalta myös dystooppisia pelkoja. Viime vuoden aikana saavutettiinkin Gartnerin hypekuvaajan mukaan tulevina vuosina saavutetaankin ylimitoitettujen odotusten huippu . Tästä huolimatta ilmiötä ei tule tuomita teknoutopiaksi, vaan big data todella muuttaa toimintapoja lähes joka sektorilla. Myös Gartner ja muut tutkimusyhtiöt ovat hyvin yksimielisiä big datan disrubtiivisesta vaikutuksesta.
Maailmassa syntyvän ja kerättävän datan määrä kasvaa huimaa vauhtia, samalla oleelliseksi muodostuu kertyvän tiedon hyötykäyttö. Tulevat menestysyritykset ja jopa valtiot ovat muokanneet toimintaansa eri lähteistä saatavan datan avulla. Esimerkiksi päätökset perustuvat entistä enemmän saatuun tietoon. Tämä tarkoittaa myös sitä, että tiedon yhä tehokkaammasta hyödyntämisestä tulee globaalissa kilpailussa täysin välttämätöntä.
Tiedon varastoinnista on tullut selkeästi halvempaa ja helpompaa (mm. pilvi), lisäksi prosessointitehon kasvaessa analyysimenetelmät ovat kehittyneet, nykyään voidaan analysoida valtavia tietoaineistoja sekä yhdistellä eri muodoissa olevaa dataa (tuoda järjestys epäjärjestykseen). Samalla sensoriteknologia on kehittynyt ja halventunut merkittävästi. Nämä ovat big data-ilmiön mahdollistajia.
Big Datan voi käsittää myös tietynlaisena tiedon paradigmanmuutoksena. Siirrytään yrityksissä ja hallinnossa tekemään päätöksiä suoraan ”mitattuun” tietoon perustuen. Tutkimuksessa ei välttämättä tarvitse samalla tavalla muodostaa teoriaa, kun voidaan käydä valtavia tietomassoja läpi ilman ennakko-oletuksia ja ns. ”löytää” malleja, yhteyksiä
Tässä strategiassa big dataa on lähdetty lähestymään mahdollisen neljännen V:n, arvon eli valuen kautta. Strategiassa ei ole keskitytty pelkästään massiivisten, jopa supertietokoneita analyysiin vaativiin reaaliaikaisiin tietomassoihin. Sen sijaan omaksuttu näkökulma on astetta käytännöllisempi. Strategiassa on paikoin keskitytty myös käsittelymenetelmällisesti yksinkertaisempaan dataan ja esimerkiksi erilaisten tietoaineistojen yhdistelyyn. Ajatuksena on ollut tunnistaa ja löytää Suomen kannalta oleellisia alueita, joilla kerättävä tieto, uudet tiedonkäsittelymenetelmät ja laajempi tiedon hyödyntäminen voivat tuoda arvoa.
Lähtökohtana on laaja yhteistyö; data-aineistojen sijaitessa usein erilaisten organisaatioiden ja instituutioiden huomassa korostuu myös laajan yhteistyön tarve, niin hallinnon, yritysten kuin esimerkiksi järjestöjen kesken. Tätä on korostettu myös jo aiemmin big dataan keskittyneen strategian tai ohjelman laatineissa maissa.
Big Data-strategioita maailmalla
Big data-ilmiön tarkastelemiseen on monessa maassa havahduttu kansallisella tasolla. Eri maissa alan kehitykseen sekä muun muassa säästöjen ja kilpailukyvyn kannalta big data on nähty yhtenä oleellisimmista kehityskuluista. Niinpä monissa maissa alalle laitetut panostukset ovat mittavia. Big data-kehityksen kärjessä kulkeminen nähty äärimmäisen tärkeänä. Big data-maailmassa kilpailu on todella kovaa ja investoinnit alalle suuria.
Esimerkiksi Saksassa ja Ranskassa big data nähdään tiiviisti teollisuuden kilpailukyvyn avaintekijänä. Maat ovat huomioneet laajasti big datan teollisuuspolitiikassaan. Ranskassa big data kuuluu seitsemän tärkeimmän tulevaisuuden teknologian joukkoon. Strategioissa nähdään big datan tuovan hallinnolle pidemmällä tähtäimellä merkittäviä kehitys- ja säästömahdollisuuksia . Esimerkiksi alan kärkimaassa Yhdysvalloissa on taas panostettu pelkästään hallinnossa big data-kehitykselle satoja miljoonia dollareita. Big data-alalla toimivien yritysten suhteen maalla taas on selkeä etumatka esimerkiksi Eurooppaan verrattuna.
Edellytykset:
Datatietoisuus
Nykyaikaisen analytiikan ja big datan omaksuminen osaksi jokapäiväistä työtä on keskeinen askel kohti tiedolla johtamisen yrityskulttuuria. Uuden teknologian ja prosessointikapasiteetin kustannusrakenteiden jatkuva kehitys vaatii omien kyvykkyyksien säännöllistä uudelleentarkastelua. Se mikä datan tarkastelussa vuosi sitten oli mahdotonta tai kannattamatonta, voi tänään olla varsin perusteltua ja liiketoiminnallisesti kannattavaksi todistettavaa. Samalla budjetilla voidaan ensi vuonna jälleen tarkastella laajempaa datamassaa, etsien tarkempia signaaleja, uusia toimintamahdollisuuksia ja aiemmin tunnistamattomia optimointikohteita. Tämä sykli toistuu yhä uudelleen ja organisaatioiden onkin opittava kyseenalaistamaan vanhat datan tarkastelun rajat ja kiinnittämään tarkemmin huomiota uusien lähteiden syntyyn. On tultava datatietoiseksi.
Perinteisesti organisaatiot ovat tottuneet tarkastelemaan oman liiketoimintansa tuottamaa dataa. Ja siitäkin erityisesti esivalittua osajoukkoa, liiketoiminnan ydintietoa. Tämä tieto on kerättynä erilaisissa perusjärjestelmissä (ERP, CRM, CMS) ja sekä datan tuntemus että sen analysointiin käytettyjen välineiden osaaminen on vahvaa. Big datan huomiointi tässä kontekstissa tarkoittaa datan keräämisen laajuuden tarkastelua. Jos perusjärjestelmien lokitasot, tapahtumien kirjaaminen tai tapahtumien sisällön laajuus on aiemmin rajoitettu tallennus- ja prosessointikapasiteetin kustannusten perusteella, voidaan näitä arvioida uudelleen nykyisen kustannusrakenteen ja kapasiteetin myötä. Ydinliiketoimintaa on myös syytä tarkastella säännöllisesti uudelleen tiedonkeräämisen potentiaalin näkökulmasta. Onko aiempi analytiikka tai toiminnan tarkastelu nostanut esiin asioita, joissa datan kerääminen ei ole riittävällä tasolla? Voitaisiinko tuota tunnistettua, kiinnostavaa dataa kerätä tuomalla järjestelmiin uusia ominaisuuksia tai toimintaympäristöön esimerkiksi erilaisia sensoreita? Näihin mahdollisuuksiin tarttuminen kartuttaa oman liiketoiminnan tuottamaa datavarantoa entisestään ja saattaa nostaa big datan teknologioiden omaksumisen varsin ajankohtaiseksi.
Datatietoinen organisaatio ei kuitenkaan rajoita tiedonjanoaan ainoastaan omien järjestelmien keräämään dataan, vaan katsoo ympäröivää ekosysteemiä laajemmin. Datan mahdollisuuksia on syytä arvioida kumppaniverkoston kanssa, tunnistaen synergioita, datan vaihdon mahdollisuuksia tai jopa uuden liiketoiminnan perustamisen potentiaalia datavarantojen yhdistämisen myötä.
Data rinnastetaan useissa puheissa nykyisin luonnonvaroihin, joten sille syntyy luonnollisesti myös arvo kauppatavarana. Tämän ilmiön myötä datan kerääminen ja koostaminen on synnyttänyt ja synnyttää edelleen uusia toimijoita markkinoille. Näiden datakauppiaiden toiminta puolestaan esiintyy joko yksittäisinä palveluina tai koostettuna datan markkinapaikoille. Kysyntä ja tarjonta määrittävät ennen pitkää erilaisen datan arvon, aivan kuten muillakin luonnonvaroilla. Nykyaikainen, datatietoinen organisaatio huomioi myös nämä kaupalliset datavarannot arvioidessaan liiketoimintansa datavetoista kehitystä.
Kolmas näkökulma saatavilla olevaan dataan on avoin data. Sekä EU-tason että kansallinen lainsäädäntö ohjaa erityisesti julkishallinnon dataa voimakkaasti kohti avoimuutta. Tulevaisuudessa kansallisin varoin kerättyä, varsin arvokasta dataa on paljon saatavilla ja hyödynnettävissä edelleen liiketoiminnan kehityksessä. Avoimen datan kulttuurin kehitys vetää mukanaan myös yksityisiä ja kaupallisia toimijoita, joiden intresseissä on avata dataansa julkisuus- ja goodwill-tarkoituksissa sekä vauhdittaakseen oman erityisosaamisalueensa kehitystä. Organisaatioiden onkin syytä ottaa mukaan kokonaisvaltaiseen data-strategiaansa myös avoin data ja sen erilaiset mahdollisuudet. Hyötyjä on tunnistettavissa sekä avoimen datan kuluttajana että tuottajana.
Kansallisessa big data -strategiassa avoimen datan kehitys on yksi keskeisistä teemoista. Nykyaikainen suhtautuminen datan avaamiseen, lainsäädännön kehitykseen reagointinopeus ja tiedon jakamisen kulttuurin kehitys luovat myös kansallista pääomaa ja auttavat Suomea toimimaan esimerkkimaana. Kokemukset avoimen datan päätöksistä, käytännön toteutuksista ja vaikutuksista liiketoimintakenttään ovat lähitulevaisuudessa haluttua pääomaa. Parhaiden käytäntöjen tuotteistaminen voi luoda myös hyvää tukea suomalaisen osaamisen vientiin ja vauhdittaa osaltaan talouskasvua.
Kokeilut/t&krahoituksen suuntaaminen
Kansalaisen oma mobiilisovellus
Tällä hetkellä mobiilialan yritykset, pienet ja suuret yhtälailla, seuraavat käyttäjän toimia monella eri tavalla. Osa seurannasta tehdään uutisoinnin mukaan ilman käyttäjän suostumusta ja osa käyttäjän suostumuksella. Käyttäjän toimien seuraaminen mobiililaitteilla on tehokas tapa kerätä rikasta tietoa käyttäjän tekemisistä. Yhteiskunta voisi ottaa käyttäjien seurannan tietoisesti käyttöön, tietenkin loppukäyttäjien luvalla ja käyttötarkoitukset perustellen. Mobiilisovellus voi kerätä tietoa aktiivisesti sensoreiden ja erilaisten mobiililaitteen tapahtumien avulla. Lisäksi sovellus voi kerätä tietoa kysymyksin ja käyttäjän itsensä syöttämänä. Sovellus voidaan myös yhdistää sosiaalisen median kanaviin.
Kerättyä tietoa voidaan hyödyntää yhteiskunnan palveluiden kehittämiseen ja suuntaamiseen tehokkaammin. Kun tiedetään kansalaisista tarpeeksi, voidaan havaita piileviä syy-seuraussuhteita ja ennakoida esimerkiksi terveyskeskusten kuormitusta.
Mobiilisovelluksen käyttäjä voisi taas saada henkilökohtaistettua tietoa omista riskeistään ja erilaisia ennusteita, joita kerätystä datasta nousee; esimerkiksi tietynlainen mobiilikäyttäytyminen voi johtaa käyttäjän stressitasojen nousuun ja heijastua terveyteen pitkällä aikavälillä.
Mobiilisovellusta voitaisiin kokeilla ensin pienimuotoisesti, jotta saadaan selville käyttäjien mielipiteet ja heidän hyväksyntänsä sovelluksesta, joka voidaan kokea herkästi myös "isoveli valvoo" -tyyppisenä sovelluksena.
Yritysten yhteistyö ja datan vaihto
Koulutus
Soveltava osaaminen yrityksissä
Tutkimus
Infrastruktuuri
Datan käytettävyys ja avoimuus
Lainsäädäntö ja sääntely
Turvallisuus ja tietosuoja
Oman tiedon hallinta
Osallistaminen
Demokraattista osallitumisen mahdollisuuksia sekä kansalaisten äänen kuulumista päätöksenteossa voidaan hyödyntää Ppliittisen ym. päätöksenteon tueksi saataisiin kansalaisten mielipidedataa eri lähteitä yhdistelemällä. +Kuumia aiheita voitaisiin nostaa nopeammin käsiteltäväksi +Ei voimakkaasti vastustettuja päätöksiä prosessista ulos, tai vähintään hyvin perustein varusteltuna +Päätöksenteko vaikuttaisi ajankohtaisemmalta, paremmin kansan kysymyksiin vastaavalta Hyödynnettävyys ja esteet: +Dataa on jo paljon, sosiaalinen media, erilaiset kyselyt -Datan luotettavuus ja eri lähteiden painottaminen olisi haastavaa ja altista muutokselle. Mikä olisi oleellista ja tärkeää?
Teknologia ja uudet tiedon analysointimenetelmät tulisi valjastaa tukemaan myös demokratian ja kansalaislähtöisyyden kehitystä =Esimerkillistä ja rohkeaa, kokemukset vientikelpoisia =Kansa ja päättäjät enemmän "samalle puolelle"
Tekniset käytännöt ja standardit
Sovellusalueet ja niiden potentiaali Suomessa
Terveys
• Mahdollistajat: Uusia teknologioita syntyy, Suomessa osaamista (Polar mm.) , quantified self(itsemittaus). Tartuntatautien leviämisen seuranta/valmistautuminen erilaisia aineistoja yhdistämällä, mm sosiaalinen media. Yksilöllisen hoidon järjestäminen. Suomessa huippuluokan geenitutkimusta. Kansallinen DNA-tietopankki
• Haasteet: Tietoaineistojen käyttöön saaminen, yksityisyyden suoja.
• Hyöty: Julkishallinnon säästöt, terveydenhuollon laadun parantuminen, yksittäisen kansalaisen terveysriskien ennustaminen/hälyyttäminen, sairauksien ehkäisy.
• Use case: Epid research oy:n diabetestutkimus.IBM, project Artemis. 23andme. OECD:n big data for health. DARPA, data mining for Cancer Research. Taltioni.
Julkinen hallinto
• Mahdollistajat: Valtava määrä kerättyä tietoa. Harmaan talouden ja talousrikosten seuranta, paljastaminen ja ennakointi yhdistämällä virallista dataa ja sosiaalisen median ym. aineistoja. Päätösten tarkempi seuranta ja mm. visualisointi. Kansantalouden kokonaissimulaatiomalli sekä yritysten että julkisen sektorin käyttöön.
• Haasteet: Tiedon avaaminen yleiseen käyttöön. Julkisten ja muiden aineistojen yhdisteleminen. Rekistereiden käyttö.
• Hyöty: Säästöt, tehokkuuden lisääntyminen, helpompi ja nopeampi asiointi. Päätösten vaikutusten parempi arviointi, Kansainvälisen rikollisuuden ja sen liikkeiden seuranta. E-demokratia ja osallistaminen.
• Use case: National Institute on Money in State Politics.
Big datan käytöllä hallinnossa on todella merkittävä tuottavuudenparannus- ja säästöpotentiaali. Tavoiteltavia hyötyjä ovat muun muassa: + Kansalaisten henkilökohtaisempi ja laadukkaampi palvelu (kansalaistyytyväisyys ja luottamus) + Julkishallinnon rahoitusvirtojen ja rakenteen parempi läpinäkyvyys (niin yleisellä kuin esim. kuntatasolla) + Julkishallinnon yksiköiden suorituskyvyn ja päätöksenteon mittaaminen (mahdollistaa yksiköiden/virastojen/kuntien keskinäisen vertailun ja suorituskyvyn kannustimet) + Erilainen toiminnan tehokkuuden mittaaminen: Julkishallinnon yksiköiden tekemien ulkoisten hankintojen tuloksellisuuden mittaaminen (hankintaprosessien parantaminen, toimittajien datalähtöinen kilpailuttaminen) + Julkishallinnon sisäisten prosessien tehokkuuden parempi mittaaminen ja optimointi, parhaat käytännöt prosessien tehostamisessa osin uudelleenkäytettävissä muissa yksiköissä (esim. eri virastot)
+ Julkishallinnon tehokkaampi ja hienojakoisempi palautteenkeruu niin palveluita käyttäviltä kansalaisilta, julkisten yksiköiden työntekijöiltä kuin johtavilta elimiltä + Kansalaisille näkyvien hakemus- ja tiedonsyöttöprosessien automatisointi byrokratian ja käsittelyvirheiden vähentämiseksi, kansalaisille mahdollisuus päivittää tietojaan
Use Caseja: Työvoimahallinto: Tukiväärinkäytösten torjunta, koulutustarve- ja työmarkkinaennusteet, työttömien avointen työpaikkojen segmentointi ja samankaltaisuusanalyysi, työllistämispalveluiden yksilöllisempi räätälöinti + Verohallinto: Petosten ja harmaan talouden torjunta + Yksityisen sektorin innovaatiopotentiaalin valjastaminen julkishallinnon palvelukseen (avoin data- ja palvelualusta kolmansien osapuolien (esim. PK-yritykset...) palveluinnovaatioille) + Toimivien julkishallinnon tietoja hyödyntävien palvelukonseptien paketointi ja vientimahdollisuudet muihin maihin vastaaviin käyttökonteksteihin Hyödynnettävyys ja esteet:
Nykyään julkishallinnon keräämä tieto pääsääntöisesti rakenteisessa teksti- tai numeromuodossa, jolloin hyödyntäminen olisi varsin yksinkertaista.
Ongelmian puolestaan muun muassa organisaatiokulttuurin haasteet, puuttuvat kannustinjärjestelmät muutoksille, liian jäykkä lainsäädäntö tai muut ihmislähtöiset esteet datan avaamisessa ja yhdistämisesssä.- Muutoksien kannalta välttämättömän datalähtöisen muutosjohtamisen ja/tai teknisen/analyyttisen osaamisen heikko saatavuus Hyödyntämisessä on myös joitain teknisiä arkkitehtuurihaasteita lähtökohtaisesti siiloutuneen ja epäyhteensopivan datan yhdistämisessä
Älykkäät verkot
”Infomediary”
Erilaisille tietotulvaa helpottaville työkaluille ja mm. etsintämentelmille on vielä kysyntää esimerkiksi tutkimuksen parissa. Suomessa tehdään alaan liittyvää tutkimusta. Tietotyö sinällään lisääntyy jatkuvasti.
Hyötyjä ja potentiaalia, jota ala voisi oikeilla panostuksilla tarjota, ovat muun muassa: + tietotulvan parempi hallinta + löydetään relevantimpaa tietoa vuorovaikutteisen (oppivan) ja visuaalisen järjestelmän avulla + Käyttkäyttäjälle näytetään perusteet miksi juuri tietyt tiedot näytetään, ja annetaan myös mahdollisuus vaikuttaa näihin perusteisiin; näin käyttäjä voi aidosti ohjata tiedon hakemista ja jalostamista + tietotyön laatu ja tehokkuus paranevat
+ menetelmässä yhdistetään ihmisen luovuus ja ja tietokoneen kyky käsitellä massiivisia ja monimuotoisia tietoaineistoja kontrollin säilyessä ihmisellä. + tiedonhaun tehostuessa tietotyöntekijöiden aikaa vapautuu päättelyyn, luovaan ajatteluun ja yhteistyöhön. + testeissä uudenlaisetn tiedonhakujärjestelmän prototyyppi on todettu Googlen scholar.google.comia tehokkaammaksi - tällä hetkellä tiedonhakujärjestelmän prototyyppiin on indeksoitu vain tieteellisiä artikkeleita (valikoiduista tietokannoista, yli 60 milj.); tavoitteena on kuitenkin laajentaa konseptia muunkinlaisen tiedon hakuun
= Suomessa on erittäin korkealaatuista ja monitieteellistä tutkimusta alueella (HIIT:istä 7 tutkimusryhmää ja Työterveyslaitoksen Aivot työssä -tutkimusryhmä, www.reknow.fi / Tietotyön vallankumous). Panostuksia alalle olisi saatavissa: Tietotyön vallankumous on TEKESin toinen strateginen tutkimusavaus syksyllä 2013.
Tutkimus
• Mahdollistajat: Uudet tutkimusmenetelmien kehitys. Esim. tekstuaalisten dokumenttien käsittelymenetelmät, mobiilidatan ja sosiaalisen median sekä trendidatan tuomat uudet tutkimusmahdollisuudet.
• Haasteet: Monitieteisyys, tietoaineistojen saatavuus. Eri alojen osaajista koostuvat tutkimustiimit?
• Hyöty: Uudet löydöt historian tutkimuksessa uusilla analyysitavoilla.
Liikenne
• Mahdollistajat: Liikenteen ohjaus , reaaliaikaisen datan lisääntyminen. Reittien ennustaminen. Logistiikan optimointi tavarakuljetuksissa.
• Haasteet: esim. julkiset aikatauluaineistot pirstaloituneina eri puolilla, yhteen saattaminen.
• Hyöty: Turvallisuuden parantaminen, ruuhkien vähentäminen, päästöjen vähentäminen. Matkustamisen helpottuminen. Toimitusaikojen lyhentyminen.
• Use case: Tukholman kaupunki + KHT institute of technology + IBM. US Xpress
Big datan avulla voidaan tavoitella ja saavuttaa monia hyötyjä liikenteen alalla. + Liikenneturvallisuus +Liikenteen ja liikkumisen tehostuminen +Ekologisempi liikenne + Joukkoliikenteen ja kevyen liikenteen tehostamiseen liittyville ekologisille ratkaisuille on erityistä tarvetta. + Liikenteen ongelmat ovat globaaleja ja siinä on mahdollista kehittää vientituotteita, esim. liikennekuvan parantaminen, liikenteen analysointi, lyhyen aikavälin liikenne-ennusteiden parantaminen, liikennesuunnittelu ja siihen liittyvät analyysit
Big data on hyödynnettävyys liikennealalla on varsin suuri, Suomella olisi mahdollisuus profiloitua liikenteen kokeiluympäristönä. Tätä jo osin LVM:n liikennepuolella tehdäänkin. -Suomen liikenne on pienimuotoista esim. Kiinaan verrattuna +Samalla tosin Suomea on helpompi hyödyntää laboratoriotyyppisenä ympäristönä +Suomessa ollaan edelläkävijöiden joukossa (ei ainoita) avoimen liikennedatan käytössä +Nykyisiä ratkaisuita voidaan parantaa nimenomaan "big data" -tyyppisin ratkaisuin
Suomella on paljon alaan liittyviä mahdollisuuksia ja potentiialia Suomessa ollaan viime aikoina oltu aktiivisia ja alalla on tutkimusryhmiä, joilla on sekä kansallisia että kansainvälisiä yhteyksiä. Toimintapotentiaali on näin ollen hyvä. Liikennealalla liikkuu raha, joten mahdollisuus kansainvälisenkin tason toimintaan on olemassa, jos toimeen tartutaan ennakkoluulottomasti.
Case: Tieliikennepalveluiden markkinapaikka, liikenne palveluna. Aikataulut, yhteydet, tilausautot, taksit, vuokraus yms. Kaikki liikennepalvelut saataisiin yhdestä paikasta. Osittain tähän suuntaan ollaan menossa. Tämä voisi olla virtuaalisesti yksi paikka. Taustalla raksuttaisi varmasti on useampia lähteitä ja palveluja.
Olisi hyödynnettävissä, kunhan yhteistä tahtoa olisi riittävästi Saavutettaisiin kustannussäästöjä ja julkisen liikenteen tehokkaampaa käyttöä Esteenä muun muassa toimijoiden välinen kilpailutilanne.
Voisi kuvitella, että jos jossain niin Suomessa tällainen olisi saavutettavissa Hyödyt esim. 15% enemmän julkisten liikennepalvelujen käytöllä olisi merkittävä etu koko maalle.
Huolto ja muut ennakoivat etäpalvelut (TI)
• Mahdollistajat: etähuolto, huollon automatisointi, laitteiden itseanalyysi, vikojen ennustaminen (Konecranes) Optimointi yhteistä koko alalle.
• Haasteet: Laajamittaista hyödyntämistä tai esimerkkejä siitä ei vielä olemassa.
• Hyöty: sopii hyvin erilaisille aloille, säästöt, halpatyökorjauksen sijaan korkeamman vaatimustason työtä, Kustannushyödyt, mahdolliset alaan liittyvät (vienti) innovaatiot.
• Use case: Ennakoiva huolto, Kone, GE. Outokumpu.
Suomella olisi mahdollisuuksia muun muassa palveluliiketoiminnan synnyttämisessä teollisen internetin avustuksella ja -ympärille. Palvelu ja huolto yhdistettynä etähuoltoon, automatisointiin, ennakoivaan huoltoon. Merkittävä osa ongelmanratkaisuista ja korjauksista voidaan automatisoida. Tämä toiminta sopii eri teollisuusalueille: Metalliteollisuus, konepajat (esim. Konecranes), tietoliikenne. Kaikki vähänkin arvokkaammat laitteet tai toiminnallisuudet pystyvät itse analysointiin ja ne voidaan testata/analysoida/korjata etäältä. Usein vikaantuminen voidaan jo ennakoida. Tällä saadaan merkittäviä säästöjä ja kompetenssi siirretään halpatyösuunnasta korkeamman kompetenssin vaatimuksiin.
Eri toimialoilla samoja tai samantapaisia tarpeita. Vaatii osaamista ja kombinaatiota erilaisista asioista: Kompetenssi, Anturit, Etäyhteys, Big Data käsittely.
Suomessa on alaa silmällä pitäen hyvä koulutustaso ja kompetenssi, myös toimintaa ja intressi on jo osittain olemassa. Etäinen sijainti markkinoilta ja päämyyntialueilta luonnollista Suomesta. Sopivia teollisuusaloja, joihin big data-lähtöinen palveluliiketoiminta sovellettaviss muun muassa metalli, koneteollisuus sekä tietoliikenne.
Cleantech
Digitalisaatio esim. Cleantech-osaamiseemme liitettynä mahdollistaa uusia innovointi- ja vientimahdollisuuksia mm. jättimäisille ja kasvaville Aasian markkinoille. Cleantechin yleinen merkitys on vahvassa kasvussa resurssiniukassa maailmassa, ei välttämättä aina omana ympäristötekniikan alanaan vaan kaikkeen muuhun liiketoimintaan sulautettuna.
Myös Cleantech-kehitystä silmälläpitäen tarvitaan uusi platform-ajattelua hyödyntävä yhteistyön malli, jolla pienet yritykset voisivat suoraviivaisemmin toimia toimia isojen teollisuusyritysten innovaatiopartnereina ja sitä kauttaa tuottaa runsaasti ja tehokkaasti yksinkertaisia konsepteja/palveluita suuryritysten teknologian (alustat, laitteet) tai datan ympärille
Nopean kansainvälistymisen (ja toki rahoituksen) haasteet käännettävä vahvuuksiksi uusilla vientikelpoisilla innovaatioilla ja palveluilla - Em. cleantechin innovoinnista ja vahvuuksista huolimatta Suomella ei välttämättä juurikaan ole alueelta omia kotimaisia käyttöreferenssejä. Ratkaisuja täytyisi kokeilla rohkeasti ensin myös kotimaassa. Osittain haasteena ovat myös teollisen internetin standardien (ja osin teknologioiden) kypsymättömyys, vaikka tulevaisuuden potentiaalia on paljon.
Markkinointi ja mainonta
Läpileikkaavia teemoja
Mydata
Quantified self
Voi muuttaa jopa terveydenhuollon painopistettä, lääkärille mennään hakemaan 'second opinion' - kustannussäästöt - liiketoiminnan näkökulmasta kiinnostavaa, että ei ole ainoastaan terveysalaa koskeva vaan QS leviää myös muille toimialoille, esim. rahoitusalalle oman talouden hallinnan ja seuraamisen kautta.
QS voi mullistaa käsityksiä ennaltaehkäisevästä terveydenhallinasta: mitä jos ajankäyttödata onkin terveysdataa? - äärimmäisen kiinnostava myös yksilö-ympäristöakselilla - voiko ilman laadusta päätellä keuhkoahtaumapolitilaan tulevan kohtauksen? - paljon hyödynnettävää myös koulussa/koulutuksessa: voi käyttää esim. omaehtoisen oppimisen seurantaan tai tekemään näkyväksi opettajien pärjäämistä eri luokkien kanssa
Hyödynnettävää on paljon ja datatalouteen virtaa tällä hetkellä myös rahoitusta - yksi mahdollinen este on QS:n jääminen liian kapea-alaiseksi: nähdään vain 'kovana' teknointoilijoiden ja terveysfanaatikkojen laitekeskeisenä maailmana.
Suomessa on olemassa vakiintuneita terveyden ja hyvinvoinnin alan toimijoita, jotka toimivat jo tällä kentällä: Firstbeat, Suunto, Polar - muilla toimialoilla lupaavia alkuja, esim. Balancion pankkidatan hyödyntämiseen - vahva start up skene - kansainvälinen verkostoituminen hyvällä tasolla.