Ero sivun ”Ruori” versioiden välillä
(→Arviointimalli: päivitetty malli ilman yleisiä ovariableja) |
|||
Rivi 135: | Rivi 135: | ||
* Malliajo 29.5.2019 [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=dbscMpzNoaiytUi3] | * Malliajo 29.5.2019 [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=dbscMpzNoaiytUi3] | ||
* Malliajo 31.5.2019 [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=JLSryIWqMiZEMhBh] | * Malliajo 31.5.2019 [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=JLSryIWqMiZEMhBh] | ||
* Malliajo 4.6.2019, ovariablet haetaan ao. sivuilta ja OpasnetUtilsista on päivitetty versio (ei toimi vanhalla) [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=SI475wjvpEYqv2Z0] | |||
<rcode graphics=1> | <rcode graphics=1> | ||
# This is code Op_fi5889/ on page [[Ruori]] | |||
library(OpasnetUtils) | library(OpasnetUtils) | ||
library(ggplot2) | library(ggplot2) | ||
openv.setN( | # First remove all objects for a fresh start. Otherwise may be problems with CheckDecisions. | ||
#rm(list=ls()) | |||
#rm(list=ls(envir=openv),envir=openv) | |||
openv.setN(1000) | |||
dat <- opbase.data("Op_fi5889", subset="Malliparametrit")[-1] | dat <- opbase.data("Op_fi5889", subset="Malliparametrit")[-1] | ||
dec <- opbase.data("Op_fi5889", subset="Decisions")[-1] | |||
DecisionTableParser(dec) | |||
CTable <- opbase.data("Op_fi5889",subset="CollapseMarginals") | CTable <- opbase.data("Op_fi5889",subset="CollapseMarginals") | ||
Rivi 149: | Rivi 157: | ||
CollapseTableParser(CTable) | CollapseTableParser(CTable) | ||
cat("Laskennassa käytetty data.\n") | |||
oprint(dat) | |||
cat("Tarkastellut päätökset.\n") | |||
oprint(dec) | |||
cat("Aggregoidut marginaalit.\n") | |||
oprint(CTable) | |||
#' | #' prepare adjusts the data table for ovariables. Requires function subgrouping from code Op_en2031/initiate on page [[Exposure-response function]] | ||
#' @param dat data.frame | #' @param dat data.frame | ||
#' @param type type of data that is used. Must match content in column Type | #' @param type type of data that is used. Must match content in column Type | ||
#' @param drop columns to remove | #' @param drop columns to remove | ||
#' @return data.frame | #' @return data.frame | ||
prepare <- function(dat, type=NULL, drop=NULL) { | prepare <- function(dat, type=NULL, drop=NULL) { | ||
Rivi 166: | Rivi 174: | ||
if(!is.null(type)) out <- out[out$Type %in% type , ] | if(!is.null(type)) out <- out[out$Type %in% type , ] | ||
if(!is.null(drop)) out <- out[!colnames(out) %in% drop] | if(!is.null(drop)) out <- out[!colnames(out) %in% drop] | ||
return(subgrouping(out)) | |||
} | } | ||
objects.latest("Op_en2031", code_name="initiate") # [[Exposure-response function]] subgrouping | |||
population <- Ovariable("population", data = prepare(dat,"population",c("Type","Exposure_agent","Response"))) | population <- Ovariable("population", data = prepare(dat,"population",c("Type","Exposure_agent","Response"))) | ||
Rivi 200: | Rivi 187: | ||
incidence <- Ovariable("incidence", data = prepare(dat,"incidence",c("Type","Exposure_agent","Unit"))) | incidence <- Ovariable("incidence", data = prepare(dat,"incidence",c("Type","Exposure_agent","Unit"))) | ||
disabilityweight <- Ovariable( | # case_burden equals disabilityweight * duration | ||
" | |||
ddata = "Op_en7748", | case_burden <- Ovariable( | ||
"case_burden", | |||
ddata = "Op_en7748", # [[Goherr assessment]] | |||
subset = "DALYs of responses" | subset = "DALYs of responses" | ||
) | ) | ||
colnames( | colnames(case_burden@data)[match( | ||
c("Resp"," | c("Resp","case_burdenResult"), | ||
colnames( | colnames(case_burden@data))] <- c("Response","Result") | ||
) | |||
case_burden@data <- orbind( | |||
case_burden@data, | |||
prepare(dat,"case burden",c("Type","Exposure_agent","Unit")) | |||
) | ) | ||
InpPAF <- EvalOutput(Ovariable("InpPAF", data = prepare(dat,"PAF","Type"))) | |||
InpBoD <- EvalOutput(Ovariable("InpBoD", data = prepare(dat, "BoD", c("Type","Exposure_agent")))) | |||
objects.latest("Op_en2261",code_name="BoDattr") # [[Health impact assessment]] | |||
BoDattr <- CheckCollapse(EvalOutput(BoDattr,verbose=TRUE)) | |||
oprint(exposure | cat("exposure\n") | ||
oprint(dose | oprint(summary(exposure),digits=7) | ||
oprint(ERF | cat("dose\n") | ||
oprint(incidence | oprint(summary(dose),digits=7) | ||
cat("ERF\n") | |||
oprint( | oprint(summary(ERF),digits=7) | ||
cat("incidence\n") | |||
oprint(PAF | oprint(summary(incidence),digits=7) | ||
cat("frexposed\n") | |||
oprint( | oprint(summary(frexposed),digits=7) | ||
oprint(BoDattr | cat("PAF@output\n") | ||
oprint(summary(PAF),digits=7) | |||
cat("BoD\n") | |||
oprint(summary(BoD),digits=7) | |||
cat("BoDattr\n") | |||
oprint(summary(BoDattr,marginal=c("Response","Exposure_agent")),digits=7) | |||
ggplot(ERF@output, aes(x=Response, weight=ERFResult))+geom_bar()+coord_flip() | ggplot(ERF@output, aes(x=Response, weight=ERFResult))+geom_bar()+coord_flip() | ||
ggplot( | ggplot(BoD@output, aes(x=Response, weight=BoDResult))+geom_bar()+coord_flip() | ||
ggplot(BoDattr@output, aes(x=Response, weight=BoDattrResult))+geom_bar()+coord_flip() | ggplot(BoDattr@output, aes(x=Response, weight=BoDattrResult, fill=Hepatitis))+geom_bar()+coord_flip() | ||
</rcode> | </rcode> | ||
Versio 4. kesäkuuta 2019 kello 08.19
Moderaattori:Jouni (katso kaikki)
Sivun edistymistä ei ole arvioitu. Arvostuksen määrää ei ole arvioitu (ks. peer review). |
Lisää dataa
|
Ruori on VN-TEAS-hanke, jossa arvioidaan erilaisia ruokaan liittyviä riskitekijöitä, niiden vähentämispotentiaalia ja niiden terveys- ja talousvaikutuksia.
Rajaus
Kysymys
Millaista tautitaakkaa Suomessa aiheuttavat Ruori-altisteet (tyydyttynyt rasva, vähäiset vihannekset, vähäiset hedelmät, liiallnen suola, dioksiinit, lyijy, toksoplasma, norovirus ja legionella?
Aikataulu ja käyttäjät
- Hanke alkoi 2018 ja loppuu 30.6.2019.
- Toteuttajina ovat Ruokavirasto, THL ja Helsingin yliopisto.
- Seuraavat skenaariot ovat tarkastelussa:
Vastaus
Vastaus kirjoitetaan tähän pian.
Perustelut
Data
Mitä kaikkea kuuluu vähäiseen hedelmien tai vihannesten syöntiin?
- Vähähedelmäinen ruokavalio: hedelmien kulutus alle 3 annosta päivässä (310 g yhteensä) (sisältää tuoreet, pakastetut, keitetyt, säilötyt ja kuivatut hedelmät mutta ei sisällä hedelmämehuja tai suolaan tai etikkaan säilöttyjä hedelmiä) http://www.healthdata.org/terms-defined. Diet low in fruits: Consumption of less than 3 servings (310 g total) of fruits per day (includes fresh, frozen, cooked, canned, or dried fruit but excludes fruit juices and salted or pickled fruits).
- Vähävihanneksinen ruokavalio: vihannesten kulutus alle 4 annosta (400 g yhteensä) (sisältää tuoreet, pakastetut, keitetyt, säilötyt ja kuivatut vihannekset mukaan lukien palkokasvit mutta ei sisällä suolaan tai etikkaan säilöttyjä vihanneksia eikä pähkinöitä, siemeniä tai tärkkelyspitoisia vihanneksia kuten perunaa tai maissia). Diet low in vegetables: Consumption of less than 4 servings (400 g total) of vegetables per day (includes fresh, frozen, cooked, canned, or dried vegetables including legumes but excluding salted or pickled, juices, nuts and seeds, and starchy vegetables such as potatoes or corn).
Luken tilastoista löytyy tietoja kalansyönnistä Suomessa. Järvikalaa ei ole eritelty, mutta muut kuin viljellyt ja merilajit ovat yhteensä 2.6 kg/a henkeä kohti. https://stat.luke.fi/en/fish-consumption-2017_en
Voiko DALYt muuntaa euroiksi, ja miten se tehdään?
- Drake ehdottaa globaalin arvon päättämistä DALYn hinnaksi, samaan tapaan kuin 1,25 dollarin alittava päivätulo on määritelty absoluuttiseksi köyhyydeksi. Tällöin kaikki tuota hintaa kustannustehokkaammat toimet kannattaisi tehdä joko kansallisin, tai jos se ei jostain syystä onnistu, kansainvälisin toimin. Hän ei kuitenkaan ehdota suuruutta tälle hinnalle.[1]
- Brent on analysoinut implisiittisiä hintoja DALYlle Global Fund for AIDS, Tuberculosis, and Malaria -säätiön rahoituspäätöksistä. DALYn hinta näyttää olevan 6300 USD kaikille taudeille keskimäärin, ja 11900 USD erityisesti HIV/AIDSille[2]. Globaalit luvut ovat toki pienemmät kuin mitä rikkaissa länsimaissa katsottaisiin aiheelliseksi käyttää.
- Erilaisista arvioinneista löytyy vaihtelevia lukuja yhden DALYn rahalliselle hinnalle. Esimerkiksi IOMin Shecan-projekti käytti arvoa 50393 €/menetetty elinvuosi[3], ja IGCB(N)-meluarviointiryhmä käyttää arvoa 60000 GBP/QALY (laatupainotettu elinvuosi) mutta samalla toteaa, että eri arvioinneissa arvot voivat vaihdella välillä 29000 - 130000 GBP/QALY[4][5].
- Berryn ja Flindellin mukaan Isossa-Britanniassa käytäntö on muodostunut sellaiseksi, että lääkkeet tai muut lääketieteelliset toimenpiteet saavat kansallisessa terveysjärjestelmässä helposti puollon, jos ne tuottavat yhden terveen elinvuoden alle 20000 GBP:n kustannuksilla. Tyypillisesti toteutetaan hankkeita tasolla 30000 GBP/QALY, mutta hankkeilta hinnaltaan yli 50000 GBP/QALY vaaditaan erityisiä perusteluja[6].
- Toisaalta Hammitt todistelee, että hinta per tilastollinen elämä (value per statistical life, VSL) ja hinta per DALY muuttuvat epälineaarisesti suhteessa toisiinsa, eikä näin ollen olisi mahdollista käyttää hyvinvointimuutoksen mittarina vakiolla kerrottua DALY-arvoa, ainakaan taloudellisen hyvinvointiteorian (economic welfare theory) puitteissa.[7]
Pitoisuusanalyysien kustannukset (poistettu).
Trikiinin valvontakustannukset: Tämän artikkelin mukaan trikiinin DALYt ovat vain luokkaa 100 DALY/miljardi ihmistä, joten valvonta ei ole mielekästä[8].
Malliparametrit
Obs | Response | Exposure_agent | Type | Subgroup | Unit | Result | Description |
---|---|---|---|---|---|---|---|
1 | CHD death | BoD | Age:Female 25-69 | DALY | 9876 (9103 - 10784) | Z:\Projects\RUORI\tautitaakka\Rasvat\IHD_data_IHME.csv | |
2 | CHD death | BoD | Age:Female 70+ | DALY | 42750 (41007 - 45909) | Z:\Projects\RUORI\tautitaakka\Rasvat\IHD_data_IHME.csv | |
3 | CHD death | BoD | Age:Male 25-69 | DALY | 48851 (54035 - 46123) | Z:\Projects\RUORI\tautitaakka\Rasvat\IHD_data_IHME.csv | |
4 | CHD death | BoD | Age:Male 70+ | DALY | 48150 (46327 - 51255) | Z:\Projects\RUORI\tautitaakka\Rasvat\IHD_data_IHME.csv | |
5 | Diet high in sodium | BoD | Age:Total population | DALY | 27670 (1310 - 66420) | IHME GBD2017 | |
6 | Diet low in fruits | BoD | Age:Total population | DALY | 36050 (20570 - 54800) | IHME GBD2017 http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2017-permalink/da3bde44e863adb438c5fb47a89942fb | |
7 | Diet low in vegetables | BoD | Age:Total population | DALY | 28440 (14190 - 45960) | IHME GBD2017 | |
8 | Liver cancer | BoD | Age:Age 25-64 | DALY | 2499 (2018 - 3115) | From IHME (2014) | |
9 | Liver cancer | BoD | Age:Age 65-74 | DALY | 2745 (2245 - 3311) | From IHME (2014) | |
10 | dummy | case burden | Age:Female 25-69 | DALY /case | 0 | Needed for case_burden to cover all Ages | |
11 | dummy | case burden | Age:Female 70+ | DALY /case | 0 | Needed for case_burden to cover all Ages | |
12 | dummy | case burden | Age:Male 25-69 | DALY /case | 0 | Needed for case_burden to cover all Ages | |
13 | dummy | case burden | Age:Male 70+ | DALY /case | 0 | Needed for case_burden to cover all Ages | |
14 | dummy | case burden | Age:Age 25-64 | DALY /case | 0 | Needed for case_burden to cover all Ages | |
15 | dummy | case burden | Age:Age 65-74 | DALY /case | 0 | Needed for case_burden to cover all Ages | |
16 | IQ loss | case burden | Age:Age 1 | DALY /IQ | 0.11 (0.06 - 0.16) | Arja used 0.013 but here we use Goherr value instead | |
17 | Listeria | case burden | Age:Total population | DALY/case | 10 (5 - 13.3) | WHO 2015 report, European values (Table A8.2) | |
18 | Noro virus | case burden | Age:Total population | DALY/case | 0.0015 - 0.0025 | WHO 2015 report, European values (Table A8.2) | |
19 | Toxoplasma gondii | case burden | Age:Age 0 (congenital) | DALY/case | 7 | WHO 2015 report, European values (Table A8.2) | |
20 | Toxoplasma gondii | case burden | Age:Age 1+ (acquired) | DALY/case | 0.05 | WHO 2015 report, European values (Table A8.2) | |
21 | Aflatoxin | exposure | Age:Age 25-64 | ng /kg /d | 0.85 - 1.14 | Finravinto 2012 | |
22 | Aflatoxin | exposure | Age:Age 65-74 | ng /kg /d | 0.5 - 0.67 | Finravinto 2012 | |
23 | Lead | exposure | Age:Age 1 | ug /l | 27.9 | Measured as blood concentration. RASKURI, Z:\Projects\RUORI\tautitaakka\Lyijy\Lyijy_tautitaakkadata.xlsx | |
24 | Saturated fat | exposure | Age:Age 25-69 | E% | 13.1 (12.9 - 13.4) | Finland, 2010 situation from Wang et al. Supplementary | |
25 | Saturated fat | exposure | Age:Age 70+ | E% | 13.2 (12.8 - 13.6) | Finland, 2010 situation from Wang et al. Supplementary | |
26 | Aflatoxin | frexposed | Age:Age 25-64 | fraction | 1 | dummy variable | |
27 | Aflatoxin | frexposed | Age:Age 65-74 | fraction | 1 | dummy variable | |
28 | Lead | frexposed | Age:Age 1 | fraction | 0.0657 | Population exposed to lead over threshold: 3126. RASKURI, Z:\Projects\RUORI\tautitaakka\Lyijy\Lyijy_tautitaakkadata.xlsx | |
29 | IQ loss | incidence | Age:Age 1 | IQ /100000py | 596000 | On average, a population has ca. 6 IQ points per person below 100: mean(abs(rnorm(10000, 100,15)-100))/2 | |
30 | Listeria | incidence | Age:Total population | # /100000py | 1.22 | Tartuntatautirekisteri 2016: 66 kpl. WHO 2015 report, European values (Table A8.2): 0.2 (0.2 - 0.3) | |
31 | Liver cancer | incidence | Age:Age 25-64 | # /100000py | 4.06 | Finnish Cancer Registry, average 2011-2015 | |
32 | Liver cancer | incidence | Age:Age 65-74 | # /100000py | 26.16 | Finnish Cancer Registry, average 2011-2015 | |
33 | Noro virus | incidence | Age:Total population | # /100000py | 1652 (630 - 3294) | WHO 2015 report, European values (Table A8.2) | |
34 | Toxoplasma gondii | incidence | Age:Age 0 (congenital) | # /100000py | 0.3 (0.2 - 0.7) | WHO 2015 report, European values (Table A8.2) | |
35 | Toxoplasma gondii | incidence | Age:Age 1+ (acquired) | # /100000py | 119 (77 - 188) | WHO 2015 report, European values (Table A8.2) | |
36 | Diet low in fruits | Fruits | PAF | Age:Total population | fraction | 1 | dummy variable |
37 | Listeria | Listeria | PAF | Age:Total population | fraction | 1 | dummy variable |
38 | Noro virus | Noro virus | PAF | Age:Total population | fraction | 1 | dummy variable |
39 | CHD death | Saturated fat | PAF | Age:Age 25-69 | fraction | 0.064 (0.050 - 0.078) | Finland, 2010 situation from Wang et al. Supplementary |
40 | CHD death | Saturated fat | PAF | Age:Age 70+ | fraction | 0.048 (0.033 - 0.063) | Finland, 2010 situation from Wang et al. Supplementary |
41 | Diet high in sodium | Sodium | PAF | Age:Total population | fraction | 1 | dummy variable |
42 | Toxoplasma gondii | Toxoplasma gondii | PAF | Age:Age 0 (congenital) | fraction | 1 | dummy variable |
43 | Toxoplasma gondii | Toxoplasma gondii | PAF | Age:Age 1+ (acquired) | fraction | 1 | dummy variable |
44 | Diet low in vegetables | Vegetables | PAF | Age:Total population | fraction | 1 | dummy variable |
45 | population | Age:Age 1 | 47577 | Statistics Finland, 2018 http://stat.fi/til/synt/index.html | |||
46 | population | Age:Age 25-64 | # | 2835089 | Statistics Finland? | ||
47 | population | Age:Age 65-74 | # | 615487 | Statistics Finland? | ||
48 | population | Age:Total population | # | 5471753 | Statistics Finland? | ||
49 | population | Age:Age 0 (congenital) | # | 47577 | Statistics Finland? | ||
50 | population | Age:Age 1+ (acquired) | # | 5471753 | Statistics Finland? | ||
51 | Hepatitis | prevalence | Hepatitis:Hepatitis B- | fraction | 0.005 | TerveSuomi | |
52 | Hepatitis | prevalence | Hepatitis:Hepatitis B+ | fraction | 0.995 | TerveSuomi | |
53 | Saturated fat | scenario exposure | Age:Male 18-24 | E% | 14.9 | Finravinto 2017. Supplementary table 7.12. Average daily intake of saturated fats by gender and age. | |
54 | Saturated fat | scenario exposure | Age:Male 25-44 | E% | 15.2 | Finravinto 2017. Supplementary table 7.12. Average daily intake of saturated fats by gender and age. | |
55 | Saturated fat | scenario exposure | Age:Male 45-64 | E% | 15.3 | Finravinto 2017. Supplementary table 7.12. Average daily intake of saturated fats by gender and age. | |
56 | Saturated fat | scenario exposure | Age:Male 65-74 | E% | 14.4 | Finravinto 2017. Supplementary table 7.12. Average daily intake of saturated fats by gender and age. | |
57 | Saturated fat | scenario exposure | Age:Female 18-24 | E% | 13.8 | Finravinto 2017. Supplementary table 7.12. Average daily intake of saturated fats by gender and age. | |
58 | Saturated fat | scenario exposure | Age:Female 25-44 | E% | 14.8 | Finravinto 2017. Supplementary table 7.12. Average daily intake of saturated fats by gender and age. | |
59 | Saturated fat | scenario exposure | Age:Female 45-64 | E% | 14.3 | Finravinto 2017. Supplementary table 7.12. Average daily intake of saturated fats by gender and age. | |
60 | Saturated fat | scenario exposure | Age:Female 65-74 | E% | 14.0 | Finravinto 2017. Supplementary table 7.12. Average daily intake of saturated fats by gender and age. | |
61 | IQ loss | Lead | threshold | Age:Age 1 | ug /l | 24 | Lanphear et al 2005 https://doi.org/10.1289/ehp.7688 CHECK THRESHOLD |
62 | Liver cancer | Aflatoxin | UR | Hepatitis:Hepatitis B- | # /(ng /kg /d /100000py) | 0.01 (0.002 - 0.03) | WHO Is this per year or per lifetime? |
63 | Liver cancer | Aflatoxin | UR | Hepatitis:Hepatitis B+ | # /(ng /kg /d /100000py) | 0.3 (0.01 - 0.5) | WHO Is this per year or per lifetime? |
64 | IQ loss | Lead | UR | Age:Age 1 | IQ l /ug | 0.039 | Lanphear et al 2005 https://doi.org/10.1289/ehp.7688 CHECK THRESHOLD |
Annos-vasteet on tässä vain näytillä, ja oikeat käyttöön tulevat luvut ovat sivulla op_en:ERFs of environmental pollutants.
Obs | Decision | Option | Variable | Cell | Change | Result | Description |
---|---|---|---|---|---|---|---|
1 | Adjust | BAU | incidence | Multiply | 0.00001 | 1/100000 py --> 1 py | |
2 | Adjust | BAU | PAF | Identity | 1 | Scaled from Wang to Finravinto 2017: mean(15.2,15.3,14.8,14.0)/13.1 | |
3 | Adjust | BAU | PAF | Exposure_agent:Saturated fat | Multiply | 1.132 | Healthy people. Data from TerveSuomi |
4 | Hepatitis | Hepatitis B- | BoD | Multiply | 0.995 | Hepatitis B patients. Data from TerveSuomi | |
5 | Hepatitis | Hepatitis B+ | BoD | Multiply | 0.005 | 1/100000py --> 1/py | |
6 | Adjust | BAU | ERF | Identity | 1 | For completion | |
7 | Adjust | BAU | ERF | Response:Liver cancer | Multiply | 0.00001 | For completion |
Obs | Variable | Index | Probs | Function | Dummy | Description |
---|---|---|---|---|---|---|
1 | BoD | incidenceSource,disabilityweightSource,populationSource,BoDSource | sum | 1 | Remove redundant | |
2 | PAF | Unit, Exposure, Scaling,Exposcen, ER_function, ERFchoiceSource, exposureSource, bgexposureSource, BWSource, doseSource, thresholdSource, ERFSource, RRSource, frexposedSource, incidenceSource, InpPAFSource | sum | 1 | Remove redundant | |
3 | case_burden | case_burdenSource | sum | 1 | Fill missing Ages | |
4 | BoDattr | PAFSource, Hepatitis | sum | 1 | Remove redundant |
Laskenta
Arviointimalli
- Malliajo 29.5.2019 [3]
- Malliajo 31.5.2019 [4]
- Malliajo 4.6.2019, ovariablet haetaan ao. sivuilta ja OpasnetUtilsista on päivitetty versio (ei toimi vanhalla) [5]
Tautitaakkakuvia
Viitteet
- ↑ Drake T. (2014) Priority setting in global health: towards a minimum DALY value. Health Economics Letter 23:2:248-252. https://doi.org/10.1002/hec.2925
- ↑ Brent RJ. (2011) An implicit price of a DALY for use in a cost-benefit analysis of ARVs. Applied Economics 43:11:1413-1421. https://doi.org/10.1080/00036840802600475
- ↑ Minstry R. (2011) Methodology for valuing health impacts on the SHEcan project. IOM Research Project P937/96. http://ec.europa.eu/social/BlobServlet?docId=10178&langId=en
- ↑ The Interdepartmental Group on Costs and Benefits Noise Subject Group. (2014) Environmental Noise: Valuing impacts on sleep disturbance, annoyance, hypertension, productivity and quiet. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/380852/environmental-noise-valuing-imapcts-PB14227.pdf
- ↑ The Interdepartmental Group on Costs and Benefits Noise Subject Group (IGCB(N)). (2010) Noise & Health – Valuing the Human Health Impacts of Environmental Noise Exposure. https://khub.net/c/document_library/get_file?uuid=6a229977-e27a-43c5-a780-e224649bd2df&groupId=6197021
- ↑ Berry BF, Flindell IH. (2009) Estimating Dose-Response Relationships between Noise Exposure and Human Health Impacts in the UK. BEL Technical Report 2009-002. https://webarchive.nationalarchives.gov.uk/20130123222353/http://archive.defra.gov.uk/environment/quality/noise/igcb/documents/tech-report.pdf
- ↑ Hammitt, J.K. (2013) Admissible utility functions for health, longevity, and wealth: integrating monetary and life-year measures. J Risk Uncertain 47: 311. https://doi.org/10.1007/s11166-013-9178-4
- ↑ Brecht Devleesschauwer, Nicolas Praet, Niko Speybroeck, Paul R. Torgerson, Juanita A. Haagsma, KrisDe Smet, K. Darwin Murrell, Edoardo Pozio, Pierre Dorny. (2015) The low global burden of trichinellosis: evidence and implications. International Journal for Parasitology 45, 2–3, 95-99. [1] [2]