Ero sivun ”Ydinvoimalan kustannus-hyötyanalyysi” versioiden välillä
Siirry navigaatioon
Siirry hakuun
(→Data: data from the model) |
(→Laskenta: päivitetty malli; ei käytä t2b-dataa vielä) |
||
Rivi 154: | Rivi 154: | ||
library(OpasnetUtils) | library(OpasnetUtils) | ||
library(ggplot2) | library(ggplot2) | ||
#rm(Dthermal_noisegrid, k.new, ElPrice, average_monthly_price, marginal_costs_for_the_new_capacity, nominal_costs) | |||
##### RESULTS SHEET | ##### RESULTS SHEET | ||
#### Locations in the Excel sheet | #### Locations in the Excel sheet | ||
# average_monthly_price ( | # average_monthly_price (€/MWh) | ||
# discount_rate | # discount_rate | ||
# noisedens calculations.2015!E5:DA5 | # noisedens calculations.2015!E5:DA5 | ||
Rivi 173: | Rivi 174: | ||
# price.oil results!C5:J5 and scenarios!C25:J25 | # price.oil results!C5:J5 and scenarios!C25:J25 | ||
# new_capacity_of_interest (MW) | # new_capacity_of_interest (MW) | ||
# new_capacity_marginal_cost ( | # new_capacity_marginal_cost (€/MWh) | ||
# noisedens calculations.2015!E5:DA5 | # noisedens calculations.2015!E5:DA5 | ||
# noisegridbase calculation.2015!E3:DA3 | # noisegridbase calculation.2015!E3:DA3 | ||
Rivi 214: | Rivi 215: | ||
} | } | ||
cumfun <- (Ovariable( | cumfun <- function(x, cols) { # integrates an ovariable over a numerical index. | ||
ind <- as.numeric(as.character(unique(x@output[[cols[1]]]))) | |||
intmatrix <- (Ovariable(output = data.frame(temp = ind, Result = ind), marginal = c(TRUE, FALSE)) <= | |||
Ovariable(output = data.frame(temp2 = ind, Result = ind), marginal = c(TRUE, FALSE))) * 1 | |||
colnames(intmatrix@output)[colnames(intmatrix@output) == "temp"] <- cols[1] | |||
out <- oapply(x * intmatrix, cols = cols, FUN = sum) # You can sum over several indices but integrate only over the first in cols. | |||
colnames(out@output)[colnames(out@output) == "temp2"] <- cols[1] | |||
# out <- unkeep(out, cols = c("tempResult", "tempSource", "temp2Result", "temp2Source")) | |||
return(out) | |||
} | |||
##### USER INPUTS | ##### USER INPUTS | ||
Rivi 249: | Rivi 259: | ||
)) | )) | ||
##### CONSTANTS | ##### CONSTANTS | ||
Rivi 270: | Rivi 269: | ||
)) | )) | ||
new_capacity_marginal_cost <- 12 #( | new_capacity_marginal_cost <- 12 #(€/MWh) constant | ||
new_capacity_of_interest <- Ovariable("new_capacity", data = data.frame( | new_capacity_of_interest <- Ovariable("new_capacity", data = data.frame( | ||
Rivi 338: | Rivi 337: | ||
noisedens <- 1/2 * (ERF((noisegridbase + noise_step / 2)/sqrt(2)) - ERF((noisegridbase - noise_step / 2)/sqrt(2))) | noisedens <- 1/2 * (ERF((noisegridbase + noise_step / 2)/sqrt(2)) - ERF((noisegridbase - noise_step / 2)/sqrt(2))) | ||
average_monthly_price <- oapply(ElPrice * noisedens, cols = "Grid", FUN = sum) # ( | average_monthly_price <- oapply(ElPrice * noisedens, cols = "Grid", FUN = sum) # (€/MWh) | ||
marginal_costs_for_the_new_capacity <- new_capacity_marginal_cost * k.new / 10^6 * 4 * 13 # There are 13 28-day months | marginal_costs_for_the_new_capacity <- new_capacity_marginal_cost * k.new / 10^6 * 4 * 13 # There are 13 28-day months | ||
Rivi 349: | Rivi 348: | ||
###nominal analysis (euros millions) 2015-19 | ###nominal analysis (euros millions) 2015-19 | ||
nominal_costs <- -1 * fixed_costs_of_new_capacity - marginal_costs_for_the_new_capacity * 5 # ( | nominal_costs <- -1 * fixed_costs_of_new_capacity - marginal_costs_for_the_new_capacity * 5 # (M€ per 5 a) | ||
nominal_revenues <- revenue_for_the_new_capacity * 5 # ( | nominal_revenues <- revenue_for_the_new_capacity * 5 # (M€ per 5 a) | ||
nominal_net_revenues <- nominal_revenues + nominal_costs | nominal_net_revenues <- nominal_revenues + nominal_costs | ||
cumulative_net_revenues <- | cumulative_net_revenues <- cumfun(nominal_net_revenues, cols = "Year") ###integrated over time | ||
###present value analysis (euros millions) 2015-19 | ###present value analysis (euros millions) 2015-19 | ||
Rivi 358: | Rivi 357: | ||
present_revenues <- nominal_revenues * discount_factor | present_revenues <- nominal_revenues * discount_factor | ||
present_net_revenues <- nominal_net_revenues * discount_factor | present_net_revenues <- nominal_net_revenues * discount_factor | ||
present_cumulative_net_revenues <- | present_cumulative_net_revenues <- cumfun(present_net_revenues, cols = "Year") ###integrated over time. | ||
ggplot(present_cumulative_net_revenues@output, aes(x = | ggplot(present_cumulative_net_revenues@output, aes(x = Year, weight = Result, fill = Oil_price)) + geom_bar(position = "dodge") + facet_grid(New_capacity ~ Demand_change) | ||
</rcode> | </rcode> |
Versio 29. syyskuuta 2014 kello 04.44
Moderaattori:Jouni (katso kaikki)
Sivun edistymistä ei ole arvioitu. Arvostuksen määrää ei ole arvioitu (ks. peer review). |
Lisää dataa
|
Kysymys
Miten lasketaan suunniteltavan ydinvoimalan kannattavuus käyttöiän aikana?
Vastaus
Perustelut
Riippuvuudet
Data
All data comes from the original Excel file.
Obs | Variable | Uncertainty | Year | Result | Description |
---|---|---|---|---|---|
1 | Oil_price | Oil price 20 % higher | 96 | ||
2 | Oil_price | Oil price same | 80 | ||
3 | Oil_price | Oil price 20 % lower | 64 | ||
4 | New_capacity | 2 %/a growth | 2015 | 1860.730594 | |
5 | New_capacity | 2 %/a growth | 2020 | 5481.175799 | |
6 | New_capacity | 2 %/a growth | 2025 | 9222.751142 | |
7 | New_capacity | 2 %/a growth | 2030 | 10084.121 | |
8 | New_capacity | 2 %/a growth | 2035 | 8859.360731 | |
9 | New_capacity | 2 %/a growth | 2040 | 8859.360731 | |
10 | New_capacity | 2 %/a growth | 2045 | 8859.360731 | |
11 | New_capacity | 2 %/a growth | 2050 | 8859.360731 | |
12 | New_capacity | TEM scenario (1.7%/a growth) | 2015 | 1860.730594 | |
13 | New_capacity | TEM scenario (1.7%/a growth) | 2020 | 4931.506849 | |
14 | New_capacity | TEM scenario (1.7%/a growth) | 2025 | 8105.022831 | |
15 | New_capacity | TEM scenario (1.7%/a growth) | 2030 | 8835.616438 | |
16 | New_capacity | TEM scenario (1.7%/a growth) | 2035 | 7796.803653 | |
17 | New_capacity | TEM scenario (1.7%/a growth) | 2040 | 7796.803653 | |
18 | New_capacity | TEM scenario (1.7%/a growth) | 2045 | 7796.803653 | |
19 | New_capacity | TEM scenario (1.7%/a growth) | 2050 | 7796.803653 | |
20 | New_capacity | 1 %/a growth | 2015 | 1860.730594 | |
21 | New_capacity | 1 %/a growth | 2020 | 3549.657534 | |
22 | New_capacity | 1 %/a growth | 2025 | 5295.091324 | |
23 | New_capacity | 1 %/a growth | 2030 | 5696.917808 | |
24 | New_capacity | 1 %/a growth | 2035 | 5125.570776 | |
25 | New_capacity | 1 %/a growth | 2040 | 5125.570776 | |
26 | New_capacity | 1 %/a growth | 2045 | 5125.570776 | |
27 | New_capacity | 1 %/a growth | 2050 | 5125.570776 | |
28 | Demand_change | Demand 1 %/a growth | 2015 | 0 | |
29 | Demand_change | Demand 1 %/a growth | 2020 | 4200.913242 | |
30 | Demand_change | Demand 1 %/a growth | 2025 | 6563.926941 | |
31 | Demand_change | Demand 1 %/a growth | 2030 | 8716.894977 | |
32 | Demand_change | Demand 1 %/a growth | 2035 | 9950.913242 | |
33 | Demand_change | Demand 1 %/a growth | 2040 | 9950.913242 | |
34 | Demand_change | Demand 1 %/a growth | 2045 | 9950.913242 | |
35 | Demand_change | Demand 1 %/a growth | 2050 | 9950.913242 | |
36 | Demand_change | Demand 0.5 %/a growth TEM scenario | 2015 | 0 | |
37 | Demand_change | Demand 0.5 %/a growth TEM scenario | 2020 | 1826.484018 | |
38 | Demand_change | Demand 0.5 %/a growth TEM scenario | 2025 | 2853.881279 | |
39 | Demand_change | Demand 0.5 %/a growth TEM scenario | 2030 | 3789.954338 | |
40 | Demand_change | Demand 0.5 %/a growth TEM scenario | 2035 | 4326.484018 | |
41 | Demand_change | Demand 0.5 %/a growth TEM scenario | 2040 | 4326.484018 | |
42 | Demand_change | Demand 0.5 %/a growth TEM scenario | 2045 | 4326.484018 | |
43 | Demand_change | Demand 0.5 %/a growth TEM scenario | 2050 | 4326.484018 | |
44 | Demand_change | Demand 0 %/a growth | 2015 | 0 | |
45 | Demand_change | Demand 0 %/a growth | 2020 | 0 | |
46 | Demand_change | Demand 0 %/a growth | 2025 | 0 | |
47 | Demand_change | Demand 0 %/a growth | 2030 | 0 | |
48 | Demand_change | Demand 0 %/a growth | 2035 | 0 | |
49 | Demand_change | Demand 0 %/a growth | 2040 | 0 | |
50 | Demand_change | Demand 0 %/a growth | 2045 | 0 | |
51 | Demand_change | Demand 0 %/a growth | 2050 | 0 | |
52 | Fixed_costs_of_new_capacity | 2015 | 6144 | ||
53 | Fixed_costs_of_new_capacity | 2020 | 0 | ||
54 | Fixed_costs_of_new_capacity | 2025 | 0 | ||
55 | Fixed_costs_of_new_capacity | 2030 | 0 | ||
56 | Fixed_costs_of_new_capacity | 2035 | 0 | ||
57 | Fixed_costs_of_new_capacity | 2040 | 0 | ||
58 | Fixed_costs_of_new_capacity | 2045 | 0 | ||
59 | Fixed_costs_of_new_capacity | 2050 | 0 | ||
60 | New_capacity_of_interest | 2015 | 0 | ||
61 | New_capacity_of_interest | 2020 | 440 | ||
62 | New_capacity_of_interest | 2025 | 1100 | ||
63 | New_capacity_of_interest | 2030 | 1100 | ||
64 | New_capacity_of_interest | 2035 | 1100 | ||
65 | New_capacity_of_interest | 2040 | 1100 | ||
66 | New_capacity_of_interest | 2045 | 1100 | ||
67 | New_capacity_of_interest | 2050 | 1100 |
Obs | Variable | Month | Result | Description |
---|---|---|---|---|
1 | Dthermal | Weeks 1 to 4 | 4328000 | |
2 | Dthermal | Weeks 5 to 8 | 4304750 | |
3 | Dthermal | Weeks 9 to 12 | 4246750 | |
4 | Dthermal | Weeks 13 to 16 | 3881000 | |
5 | Dthermal | Weeks 17 to 20 | 3226250 | |
6 | Dthermal | Weeks 21 to 24 | 2822750 | |
7 | Dthermal | Weeks 25 to 28 | 2661500 | |
8 | Dthermal | Weeks 29 to 32 | 2585250 | |
9 | Dthermal | Weeks 33 to 36 | 2904500 | |
10 | Dthermal | Weeks 37 to 40 | 3255750 | |
11 | Dthermal | Weeks 41 to 44 | 3757250 | |
12 | Dthermal | Weeks 45 to 48 | 4120000 | |
13 | Dthermal | Weeks 49 to 52 | 4220750 | |
14 | Dthermal_sd | Weeks 1 to 4 | 448471.90225 | |
15 | Dthermal_sd | Weeks 5 to 8 | 372222.83725 | |
16 | Dthermal_sd | Weeks 9 to 12 | 431200.65775 | |
17 | Dthermal_sd | Weeks 13 to 16 | 530007.6645 | |
18 | Dthermal_sd | Weeks 17 to 20 | 539874.6175 | |
19 | Dthermal_sd | Weeks 21 to 24 | 514974.322 | |
20 | Dthermal_sd | Weeks 25 to 28 | 515219.12525 | |
21 | Dthermal_sd | Weeks 29 to 32 | 543795.49475 | |
22 | Dthermal_sd | Weeks 33 to 36 | 446860.6225 | |
23 | Dthermal_sd | Weeks 37 to 40 | 316494.73225 | |
24 | Dthermal_sd | Weeks 41 to 44 | 420111.4905 | |
25 | Dthermal_sd | Weeks 45 to 48 | 487450.071 | |
26 | Dthermal_sd | Weeks 49 to 52 | 490019.918 | |
27 | dummies | Weeks 1 to 4 | 490300 | |
28 | dummies | Weeks 5 to 8 | 589230 | |
29 | dummies | Weeks 9 to 12 | 571340 | |
30 | dummies | Weeks 13 to 16 | 198190 | |
31 | dummies | Weeks 17 to 20 | -317120 | |
32 | dummies | Weeks 21 to 24 | -684420 | |
33 | dummies | Weeks 25 to 28 | -849080 | |
34 | dummies | Weeks 29 to 32 | -851290 | |
35 | dummies | Weeks 33 to 36 | -664640 | |
36 | dummies | Weeks 37 to 40 | -371490 | |
37 | dummies | Weeks 41 to 44 | 0 | |
38 | dummies | Weeks 45 to 48 | 218750 | |
39 | dummies | Weeks 49 to 52 | 288840 |
Obs | Parameter | Unit | Value | Description |
---|---|---|---|---|
1 | discount_rate | 1 /a | 0.04 | |
2 | new_capacity_marginal_cost | 12 | ||
3 | beta.0 | 589000 | ||
4 | beta.oil | -23987 | ||
5 | beta.eua | 0 | ||
6 | beta.p | 1185400 | ||
7 | price.eua | 0 | ||
8 | price.feed | 0 | ||
9 | price.ceiling | 2000 | ||
10 | noise_step | 0.1 | ||
11 | grid_points | # | 101 |
Laskenta
Nuclear investment calculator. Copyright James Corbishley and Matti Liski 2014 Original calculator in Excel [1].
Katso myös
Avainsanat
Viitteet
Aiheeseen liittyviä tiedostoja
<mfanonymousfilelist></mfanonymousfilelist>