Ero sivun ”Metallimalmikaivostoiminnan elinkaari” versioiden välillä

Opasnet Suomista
Siirry navigaatioon Siirry hakuun
Rivi 231: Rivi 231:


===Murskaus ja seulonta===
===Murskaus ja seulonta===
Louhitun malmin kappalekoko pienennetään murskauksella jatkokäsittelyyn sopivaksi. Maanalaisessa louhinnassa malmikivi esimurskataan nostolaitteille sopivaksi ennen malmin nostoa maanpinnalle. Mikäli malmi kuljetetaan kaivoksesta rikastamolle kuorma-autoilla, ylisuuret kappaleet rikotaan ennen kuljetusta ja ensimmäinen varsimeinen murskausvaihe tehdään maan pinnalla sijaitsevassa murskaamossa. Ensimmäistä murskausvaihetta nimitetään esi- tai karkeamurskaukseksi, ja tavallisesti siihen käytetään leuka- tai karamurskaimia.
Tämän jälkeen murskausprosessi riippuu jauhatus- tai muusta käsittelyprosessista. Normaalisti murskauspiiri koostuu murskaimista ja seuloista, jotka on kytketty piiriin siten, että piiristä ulos tulevan materiaalin raekoko on halutulla tasolla. Materiaalni voidaan toisinaan jakaa esimurskauksen jälkeen eri raeluokkiin myös pelkästään seulomalla. Useimmiten malmi murskataan yhdessä tai useammassa vaiheessa hienommaksi ennen jatkokäsittelyä.
Hienomurskaukseen käytetään yleisimmin kartiomurskaimia ja seulontaan täryseulakoneita, joihin on asennettu yksi tai useampia seulakokoja. Murskaus- ja seulontapiiri on toisinaan rakennettu ulkotiloihin ilman varsinaisia rakennuksia. Tämä ratkaisu antaa haasteita sekä ympäristönsuojelulle että toiminnalle vaikeissa sääolosuhteissa.
'''Murskaus ja seulonta Suomessa toimivilla metallimalmikaivoksilla'''
{| {{prettytable}}
|Kaivos/tuotantolaitos
|Murskaus ja seulonta
|----
|Kemin kaivos
|3-vaiheinen murskaus, joista 1- vaihe maan alla (karamurskain), 2. vaihe avoimena piirinä (STD-kartiomurskain) ja 3. vaihe avoimena piirinä (SH-kartiomurskain)
|----
|Kittilän kaivos
|1-vaiheinen murskaus maan pinnalla (leukamurskain)
|----
|Pyhäsalmen kaivos
|1-vaiheinen murskaus maan alla (laukamurskain), seulonta kolmeen raeluokkaan maan päällä, tarvittaessa jakeidem lisämurskaus seulonnan/jauhatuksen yhteydessä (kartiomurskain)
|----
|Talvivaaran kaivos
|Esimurskaus karamurskaimella, kuljetus välivarastoon, 3-vaiheinen hienomurskaus kartiomurskaimella, joista kaksi viimeistä vaihetta suljetussa piirissä seulontakoneiden kanssa, murskatun tuotteen raekoko 80% alle 8 mm
|----
|Sastamalan rikastamo
|3-vaiheinen murskaus: 1. vaihe leukamurskain, 2. vaihe karamurskain ja 3. vaihe kartiomurskain, jotka toimivat avoimena, lisäksi piirissä täryseula, joka erottelee valmiin hienon tuotteen jauhatukseen
|----
|Lahnaslammen kaivos
|2-vaiheinen murskaus, esimurskaus leukamurskaimella, toisessa vaiheessa iskupalkkimurskain
|}
===Jauhatus===
===Jauhatus===
===Rikastus===
===Rikastus===

Versio 11. helmikuuta 2012 kello 15.21




Kaivostoiminnan elinkaari käsittää karkeasti neljä päävaihetta: malminetsinnän, kaivosten rakentamisen, tuotannon ja jälkihoidon. Elinkaari on voimakkaasti sidoksissa taloudellisiin suhdanteisiin. Malminetsintävaihe hyödyntämiskelpoisen esiintymän löytämiseksi ennen varsinaista kaivostoiminnan aloittamista voi kestää vuosia tai jopa vuosikymmeniä. Samoin tuotantovaiheen pituus voi vaihdella voimakkaasti riippuen mm. malmiesiintymän koosta, laaadusta ja louhintatekniikasta sekä louhittavien arvoaineiden markkinahinnoista. Hyödyntämiskelpoisen esiintymän ehtyessä kaivosalue suljetaan ja saatetaan jälkihoidolla ympäristölle ja inhmisten terveydelle haitattomaan kuntoon. Kaivosten sulkemisvaihe voi jatkua edelleen seurannan muodossa vuosia tai vuosikymmeniä toiminnan päättymisen jälkeen.

Alla olevissa kappaleissa kuvataan kaivostoiminnan keskeiset prosessit elinkaaren eri vaiheissa. Kuvaukset tällä hetkellä Suomessa toimivista metallimalmeja tuottavista kaivoksista ja niiden tuotantoprosesseista on esitetty sivulla Metallimalmikaivostoiminnan kirjallisuutta.

Malminetsintä

MAlminetsinnän tavoitteena on löytää ja paikantaa maankamaran mineraaliesiintymä, jonka voidaan osoittaa olevan taloudellisesti hyödynnettävä kaivostoiminnan aloittamiseksi. Malminetsintä on pitkäjätneistä työtä, joka etenee vaiheittain alueellisesta aihehankinnasta kohteelliseen tutkimukseen. Alueellisessa etsintävaiheessa malmipotentiaalisten vyöhykkeiden tulkinnassa hyödynnetään valtakunnanlaajuista GTK:n geologisten kartoitusten ja tutkimusten tuottamia tietoja. Kallioperäkartoitus kertoo maalajien jakautumisesta sekä maaperämuodostumista. Malmipotentiaalisten vyöhykkeiden tulkintaa hyödyntävät lisäksi merkittävästi geofysiikan ja geokemian aineistot. Alueellisia aineistoja säilytetään GTK:n tietokannoissa, joista ne ovat saatavilla jatkotutkimuksia varten [1]]. Nykyisin malmipotentiaaliset alueet ja kivilajit ovat suuntaa-antavasti tiedossa, ja kohdentava ja kohteelinen malminetsintä voidaan suunnata näille alueille.

Malminetsintämenetelmät

Kohdentava malmintesintä perustuu geologisiin maastotutkimuksiin eli suoriin havantoihin ja mittauksiin kalliopaljastumista, lohkare-etsintään, kallio- ja moreeni-näytteenottoon sekä kerättyjen näytteiden analysointiin (GTK 2006). Valtaosa etsintätutkimuksesta lopetetaan, jos viitteet malmivarannoista osoittautuvat kohteelliessa selvityksessä riittämättömiksi. Malminetsintä etenee erittäin harvoin koelouhintaan tai kaivospiirihakemukseen. Tosin samojen kohteiden tutkiminen voi aktivoitua uudelleen joko lisääntyneen tutkimustiedon, metallien maailmanmarkkinahintojen muutoksen tai metallien talteenottotekniikoiden kehittymisen myötä. Malminetsintätoimiin vaikuttavat kallioperässä olevan luonnonvaran lisäksi taloudelliset, ympärostönsuojelluliset ja yhteiskunnalliset tekijät.


Kalliopaljastuman havainnointi ja näytteenotto kallion pinnasta

Geologinen malminetsintä perustuu ensisijaisesti kalliopaljastumista tehtäviin maastohavaitoihin (esim. kivilaji, rakenne ja viitteet malmiutumisesta). Käytännössä kallion päältä käännetään havaintoja ja mittauksia varten turve noin neliömetrin suuruiselta alueelta käsin pois, ja havainnoinnin jälkeen tusve palautetaan paikalleen. Kiinnostavimmat kivilajipaljastumat puhdistetaan veden ja harjan avulla ja pidetään avoimina alueella tapahtuvien tutkimusten ajan.

Kallioperänäytteet otetaan mineralogisiin tutkimuksiin ja muihin määrityksiin kallion pinnasta palanäytteenä vasaralla, kannettavalla minikairalla (10-20 cm:n kivipuikot), sahaamalla timanttilaikalla (5 cm leveä ja 5-7 cm syvä uranäyte) tai jauhenäytteinä poralla. Kallioperään jää näytteen suuruinen jälki, ja sen ympärille mahdollista kivipölyä.


Lohkare-etsintä

Suurin osa, yli 90%, Suoman kallioperästä on irtaimien maalajien peitossa. Tämän vuoksi kohteellisessa malminetsinnässä tarvitaan suoraan kallioperähavainnoinnin lisäksi myös muita menetelmiä, kuten lohkare-etsintää, jossa pyritään mannerjäätikön kuljettamien irtoimalohkareiden avulla paikallistamaan malmipotentiaalinen kallio tarkempia tutkimuskia varten. Mielenkiintoisista lohkareista otetaan näytteet vasaralla tai minikairalla.


Geofysiikan maastotyöt

Geofysiikaalisilla mittausmenetelmillä mitataan maankamaran fysikaalisia ominaisuuksia ja tehdään niistä geologisia ja malminetsintää palvelevia tulkintoja. Mittaustuloksista voidaan päätellä paksun maapeitteen alla olevan kallioperän laatua, esim. kivilaji- ja mineraalikoostumiksen vaihtelua, sekä paikantaa siirros- ja ruhjevyöhykkeitä, kivirakenteita sekä -muuttumisvyöhykkeitä. Malminetsinnässä geofysikaalisten mittaustulosten ja mallinnusten perusteella arvioidaan arilaiseten malmikriittisten kivilohkojen syvyysulottuvuudet ja rakenne maanpinna alla. Tavallisesti käytetään magneettisia ja sähköisiä menetelmiä, joskus gravimetrisia menetelmiä eli painovoimamittauksia. Sähköisistä menetelmistä käytetyimpiä ovat slingram-menetelmä, indusoitu polarisaatio- (IP) ja omapotentiaalisuus (SP). Malminetsinnässä voidaan myös käyttä seismiä ja radioaktiivisia menetelmiä.

Malminetsintään liittyvät geofysiikan mittaukset tehdään kesäisin jalkaisin ja talvella moottorikelkalla kulloinkin tarkoituksenmukaisella linjavälillä, yleensä esimerkiksi 50-100 metrin välillä. Mittauksia tehdään myös mittauslaitteilla varustetulla lentokoneella lentäen kohdealueen yli (lentogeofysiikka). Geofysikaalisia mittauksia (esim. suskeptibiliteetti, tiheys, sähkönjohtavuus) voidaan tehdä kairareiästä. 3D-mallinnuksen kehittymisen ja pintaan puhkeamattomien malmiaiheiden etsinnän myötä on aloutettu kehittämään syvyysulottuvia erikoismittauksia ja niihin liittyvää tulkintaosaamista.


Geokemiallinen malminetsintä

Geokemiallinen malminetsintä tutkii alueellisesta pitoisuustasosta poikkeavia, "anomaalisia", pitoisuuksia. Näytemateriaalina käytetään yleisimmin moreenia, joka sisältää jauhautunutta kallioainesta ja kuvastaa täten epäsuorasti kallioperää. Kohteellisissa etsintätöissä geokemia on rutiinimenetelmä, ja näytteenottotiheys vaihtelee parista metristä muutamaan sataan metriin. Maastossa liikutaan talviaikaan moottorikelkoilla. Näytteet otetaan yleensä läpivirtausterällä (tai kierrekairalla) kevyelle telakalustolle asennetulla iskuporalla. Kallion pinnasta voidaan ottaa iskuporalla moreenin lisäksi soija- ja murskenäytteet.

Geokemiallisista tutkimusmenetelmistä Suomen oloissa tavallisia ovat myös humus. ja kalliogeokemia (litogeokemia) sekä raskasmineraali- ja isotooppitutkimukset. Kalliogeokemia perustuu kallionäytteiden kemiallisen koostumuksen analysoimiseen. Humusgeokemia soveltuu puolestaan alueille, joissa kasvillisuus ja kosteus-olosuhteet eivät liioin vaihtele ja maapeite on riittävän ohut. Raskasmineraalitutkimuksissa maanäytteestä rikastetaan erilleen raskain mineraaliaines, joka tutkitaan mikroskoopilla ja analysoidaan kemiallisesti.

Maaperä- ja kallioperänäytteiden kamiallinen koostumut analysoidaan monialkuainemenetelmillä ja tuloksista tehdään geologinen tulkinta. Eri metallien pitoisuusvaihteluja havainnollistetaan kartoilla. Suomen moreenien geokemiasta on saatavilla yleistä tietoa esimerkiksi ns. harvapisteaineiston perusteella (1 näyte/4 km^2)(Salminen 1995)

Muita geokemian sovellutuksia ovat esim. Malmipotentiaalin määrittäminen kivinäytteiden mineraalien kemiallisten koostumusten perusteella, Mobile-Metal Ion-tutkimus (MMI) sekä erilaisista kairauksista ja kartoituksista kerättyjen näytteiden analyysitulosten tilastolliset ja graafiset tutkimusmenetelmät. MMI-tutkimus perustuu maapeitteen pintaosan mineraali- ja humusrakeiden pinnalle heikosti sitoutuneiden metalli-ionien ja muiden alkuaineiden pitoisuuksien määrittämiseen maaperästä. Edustava näyte otetaan lapiolla kaivetusta, noin 0,25 m syvyisestä kuopasta (vrt. Mann et al. 1998)


Tutkimuskaivannot

Paksumpien maaperäpeitteiden alueilla kallionpintaa tutkitaan aiemmin kuvatuin menetelmin kaivinkoneella tehdyistä tutkimuskaivannoista. Maaperä- ja moreenitutkimuksessa lapiolla tai kaivinkoneella kaivetuista tutkimuskaivannoista selvitetään maaperän koostumusta ja rakennetta, kerrostumisvaiheita, kiljetusmatkaam moreenin raskasmineraaleja ja malmilohkareidn esiintymistä moreenissa. Puhdistettujen monttujen seinämät kartoitetaan ja valokuvataan. Monttujen seinämistä tehdään kivi- ja pitkulaisten kivien suuntauslaskuja ja otetaan näytteitä rakeisuus- ja geokemian analyyseihin sekä raskasmineraalitutkimuksiin.


Kallioperätutkimus

Kohteellisen malminetsinnän tärkein vaihe on kallioperäkairaus, jolla aadaan luotettavia yhtenäisiä ja jatkuvia näytesarjoja tutkimuskohteen kivilajeista ja kallioperän rakenteesta. STväkairauksiin siirrytään, kun geologisten, geofysikaalisten ja/tai geokemiallisten tutkimustulosten perusteella on rajattu kiinnostava, malmipotentiaalia osoittava alue. Kairaus on tärkeä tutkimusmenetelmä erityisesti vähän kalliopaljastumia sisältävllä alueilla, joissa maapeitteen paksuus on suuri.

Maataloustraktoreita ja raskaimmillaan metsänkorjuussa käytettäviä monitoimikoneita kooltaan vastaavaa kairauskalustoa kuljetetaan lavettiautoilla tai kairauskalusto on rakennettu osaksi kuorma-autoa. Maastossa liikkumisessa hyädynnetään mahdollisuuskien mukaan vamliita koneuria. Syväkairauksessa kalliosta kairataan timanteilla varustetulla porakruunulla lieriönmuotoinen näyte teräs- tai alumiinikairausputkeen. Kairaus tehdään maapeitteen paksuudelle ulosttuvan suojaputken läpi, ja siinä käytetään huuhteluaineena joko vettä tai ilmaa, tai molempia yhdessä. Kairasydännäytteet otetaan kairauspaikasta mahdollisimman ehjinä, katkotaan näytelaatikoihin ja toimitetaan jatkotutkimuksiin. Kairareikään jätetään usein maanpinnalle ulottuva suojaputki ja korkki reiästä tehtäviä geofysikaalisia lisätutkimuksia varten. Kairauksessa käytettävä huuhteluvesi otetaan alueen puroista ja imeytetään lopuksi maaperään saostusastian kautta.

Malminetsinnässä timanttikairauksen reikien syvyys vaihtelee pääasiallisesti 50-200 metrin välillä. Kairaus jaetaan tarkoituksen mukaan eri vaiheisiin. Tunnustelukairauksessa yksittäisiä reikiä sijoitetaan etsintäalueelle aiempien tutkimustulosten ja indikaattoreitten pohjalta. Etsintäkairauksessa tutkitaan alueen profiilia sijoittalamma reiät peräkkäin tutkittavan alueen poikki. Profiilit sijoitetaan tyypillisesti 50-200 metrin välille ja reikien väli on vastaavasti 50-100 metriä. Inventointikairauksessa reikäväliä ja profiiliväliä edelleen tihennetäään ja alueelle voidaam tehdä viuhkakairaus.


Koelouhinta

Esiintymän hyädynnettävyyden tai kannattavuuden selvittäminen sekä rikastusmenetelmiän testääminen ja kehittäminen osana malminetsintää ja kaivoshankkeen suunnittelua edellyttävät koelouhintaa ja rikastuskokeita. Koelouhinta tehdään vastaavilla menetelmillä kuin varsinaine louhinta, kun kaivottoiminnat suunnittelu on käynnistynyt malminetsinnän tulosten perusteella.

Laboratoriomittakaavan rikastutkokeissa vaadittava koelouhintamäärä on pienempi kuin tehdasmittakaavan rikastuskokeissa. Tyypillinen näytemäärä jauhatus ja vaahdotus-koeajoa varten on 100-300 tonnia. Sopivan rikastusmenetelmän kehittäminen mineraalitekniikan laitoksissa edellyttää sen sijaan yleensä 200-1000 tonnin louhintamääriä. Näitä suurempia koelouhintamääriä, 20000-60000 t käytetään menetelmäkehityksessä, jos koerikastus tehdään esiintymän lähialueella toimivassa rikastamossa, tai uutta rikastusmenetelmää kehitetään esiintymän lähessä, suunnitellun kaivospiirin alueella. Koelouhinnassa malmiesiintymän päältä poistettujen pintamaiden ja mahdollisten sivukivien (jätekivien) määrä vaihtelee tavallisesti muutamista sadoista muutamiin satoihin tuhansiin kuutiometreihin.

Kaivoksen avaaminen ja rakennusvaihe

Kaivoksen avaaminen edellyttää, että malmiesiintymän hyödyntäminen on taloudellista. Malmiesiintymän läytäminen ei aina johda kaivoksen avaamiseen. Esiintymän hyödyntämiskelpoisuutta arvioitaessa arvioitaessa otetaan huomioon mm. esiintymän sijainti, koko, mineralogia, arvomineraalien pitoisuudet, kalliomekaniikka, rikastus- ja jatkoprosessointi ja rikasteiden markkinointimahdollisuudet, kaivosten rakentamiskustannukset sekä hanketta koskevat ympäristö- ja muut lupapäätökset. Tarvittavien selvitysten tekeminen saattaa kestää useita vuosia.

Esiintymän taloudellisuutta selvitetään yleensä tiukasti määrättyjen standardoitujen tai konsernin sisäisten menettelytapojen perusteella, sillä kaivostoimintaa harjoittavat yritykset ovat yleensä pörssissä noteerattavia yhtiöitä. Tällaisia menettelyohejita ohttp://fi.opasnet.org/fi_wiki/index.php?title=Metallimalmikaivostoiminnan_elinkaari&action=edit&section=3vat esim.:

  • National Instrument 43-101
  • The JORC Code.

Esiintymän taloudellisen hyädyntämisen selvittäminen edellyttää malminetsintävaiheessa toteutetun tiedon tarkentamista mm. geofysikaalisilla mittauksilla ja kairauksilla sekä maaperä- ja kivinäytteiden analysoimisella. Malmin prosessiteknisen käsittelyn selvittämiseksi kairausnäytteistä tehdään karakterisointitestejä, joitta saadaan alustva käsitys mahdollisten sivukivien ja jätemateriaalin ympäristökelpoisuudesta sekä kemiallisesta käyttäytymisestä lyhyellä aja pitkällä aikavälillä. Ennen lopullista kaivospäätöstä suoritetaan usen lisäksi riittävän suuri koelouhinta ja -rikastus louhintateknisten seikkojen varmistamiseksi ja rikastusprosessiin liittyvien yksityiskohtien selvittämiseksi.

Kaivoksen rakentaminen käynnistetään yleensä viipymättä kaivosten avaamispäätöksen jälkeen. Kaivosten rakentaminen kestää tavallisesti noin kaksi vuotta, jos kaivoksen yhteyteen rakennetaan myös rikastamo. Kun kaivoksen rakentaminen aloitetaan, rakennetaan aluksi tarpeelliset tieyhteydet sekä alkuvaiheen töitä ajatellen riittävät sähkönsyötöt. Ensivaiheessa työ-, tauko- ja varastotiloina käytetään yleensä väliaikaisia rakennuksia. Pysyvien rakennusten (rikastamo-, huolto-, varasto-, toimisto- ym. rakennukset) ja muun infrastuktuurin (mm.rikastushiekka-altaat, vesien käsittelyjärjestelmät, sivukiven läjitysalueiden pohjarakenteet) rakentaminen käynnistyy kiireellisyysjärjestyksessä.

Ennen tuotannon käynnistämistä rakennetaan louhinnassa ja rikastusprosesseissa muodostuville kaivannaisjätteile (erityisesti avolouhinnassa muodostuva sivukivi ja rikastamolla muodostuva rikastushiekka) läjitysalueet, jotka varmistavat näiden materiaalien turvassisen varastoinnin niin terveyden kuin ympäristönkin kannalta. Läjitysalueiden sijoituspaikan ja rakentamisen suunnittelussa huomioidaan materiaalien fysikaalinen ja kemiallinen käyttäytyminen sekä mahdolliset vaikutukset ympäristöön.

Rikastushiekan läjitystä varten rakennetaan yleensä laajat, padotut altaat, jotka on varustettu jäteveden juoksutusrakenteilla ja veden puhdistusjärjestelyillä. Maaperän ja pohjaveden pilaantumisen ehkäisemiseksi altaisen pohjarakenteiden tiiveys varmistetaan tarvittaessa tiivistemateriaaleilla ja vuorauksilla. Sivukiven läjitysalueiden rakenteet ovat tavallisesti yksinkertaisempia, sillä niissä ei yleensä tarvita patoja. Maaperän tiiveys ja lujuus (kantavuus) selvitetään näilläkin alueilla etukäteen. Myös valumavesien hallinta suunnitellaan ennen läjityksen aloittamista.

Rakennusvaiheessa tehdään myös malmin tuotantolouhinnan kannalta tarpeelliset valmistelutyöt. Malmin tuotanto pyritään käynnistämään ennen kaivosalueelle tulevan rikastamon valmistumista. Avolouhintaa varten malmiesiintymän pinta paljastetaan alueella, jolta louhinta aloitetaan. Lisäksi malmiesiintymän ympäriltä poistetaan pintamaita ja sivukiveä. Tämä edellyttää usein massiivisia maansiirtotöitä. Maanalaisen kaivostoiminnan käynnistäminen alkaa yleensä vinotunnelin ja mahdollisen nostokuilun rakentamisella. Nämä rakenteet tehdään tavallisesti sivukiveen. Myös maanalaiset huolto- ja varastotilat rakennetaan ennen tuotannollisen louhinnan alouttamista.

Kaivosalueen teistön, patojen, ym. kohteiden rakentamisessa tarvittava ns. tarvekivi (louhe ja siitä tehtävät murskeet) pyritään saamaan kaivosalueelta suunnitellun avolouhoksen alueelta malmivyöhykkeen ulkopuolelta ja/tai maanalaisen kaivoksen vinotunneleiden ym. tilojen louhinnasta. Rakennuskohteissa käytettävän kiviaineksen tulee täyttää ympäristökelpoisuus- ja teknilliset vaatimukset.

Avolouhosalueelta ja muista rakennuskohteista poistettavat pintamaat (ts. maanpoistomassat) varastoidaan yleensä kaivosalueelle alueella suoritettavia maanrakennus- ja maisemointitöitä varten. Rakennuvaiheessa tai maanalaisesta kaivoksesta louhittava hyötykäyttöön kelpaamaton tai ylimääräinen kiviaines läjitetään sivukiven läjitysalueelle.

Yksityiskohtaisempaa tietoa malmiesiintymän kannattavuuden arviointiin ja kaivoksen avaamiseen liittyvistä menettelyistä on esitetty esim. Kaivos- ja louhintatekniikan oppikirjassa (Hakapää ja Lappalainen 2009). Seuraavaan taulukkoon on koottu esimerkkitapauksia suomalaisten metallimalmikaivosten avaamiseen liittyvistä toimenpiteistä.


Esimerkkitapauksia kaivosten avaamistoimista Suomessa toimivilla metallimalmikaivoksilla

Kaivos/arvometalli Tuotannon aloittamisviosi Kaivoksen avaamiseen iittyvät toimenpiteet
Kemin kaivos/Cr 1969 Yhtiökohtainen menettelytapa malmiesiintymän arvioinnissa 60-luvulla, koelouhinta ja rikastustutkimukset koerikastamolla, jätealtaan padon pohjista maaperätutkimukset
Kittilän kaivos/Au 2008 Alkuvaiheessa yhtiökohtainen menettelytapa malmiesiintymän arviointiin, teistön kunnostaminen ja rakentaminen sekä sähkölinjan rakentaminen, koelouhintaa ja -rikastusta, jätealueen pohjakarenteiden rakentaminen (tiivis kumibitumikermi + moreeni), nykyään malmivarojen raportoinnissa NI 43-101-järjestelmä
Pyhäsalmen kaivos/Cu, Zn, S 1962 Yhtiökohtainen menettelytapa malmiesiintymän arvioinnissa 50-60 lukujen vaihteessa, koelouhinta ja rikastustutkimukset koerikastamolla, jätealtaan padon pohjista maaperätutkimukset, jätealtaiden pohjatutkimukset, nykyään malmivarojen raportoinnissa NI 43-101-järjestelmä
Talvivaaran kaivos/Ni, Zn 2009 80-luvulla ensimmäisen vaiheen koelouhinta ja koetehdasmittakaavaiset prosessitutkimukset sekä laajamittaisia laboratoriokokeita, 2000-luvulla uudet koelouhinnat ja kasaluiotuskokeet, mineraali varantojen raportoinnissa käytetään sekä JORC Code- että NI 43-101-järjestelmää. Liuotuskasojen ja sivukivikasojen setä jätealtaan pohjat tiivistetty muovikalvolla, infrarakentaminen sisälsi tiet, rautatien ja sähkölinjan, tuotantolaitokset noin 700000 rakennus-m^3
Oriveden kaivos/Au 1995 Laboratoriokokeet kairanäytteistä, koelouhinta, tehdasmittakaavaiset ja pilot-koeajot
Jokisivun kaivos/Au 2009 Koelouhinta ja tehdasmittakaavaiset koeajot, taloudellisen arvioinnin pohjana on kassavirtaan perustuva kannattavuustarkastelu ja emoyhtiön hinta- ja valuuttakurssiennusteet, NPV- ja IRR-laskelmat. Rakentaminen sisälsi tieyhteyksien rakentamista, sivukiven läjitysalueen pohjalle ajettiin moreenikerros, louhosvesien käsittelyyn rakennettiin kaksi esiselkeytysallasta ja kaksi peräkkäistä jälkiselkeytysallasta.
Lahnaslammen kaivos/Talkki, Ni 1970 Koelouhinta ja -rikastus 1960-luvulla, rikastusmenetelmän valinta laboratorio- ja pilot-kokeiden perusteella, avolouhinta malmiesiintymän luonteen perusteella.

Kaivoksen tuotantovaihe prosessivaiheittain

Kaivoksen tuotantovaiheessa malmi irrotetaan kallioperästä louhimalla. Tmän jälkeen malmikivi murskataan ja jauhetaan rikastusprosessiin sopivaksi. Rikastuksessa malmista erotetaan arvoaineet/-mineraalit kemiallisesti mekaanisesti erilleen muusta kiviainekseska ns. rikasteiksi. Seuraavissa kappaleissa kuvataan kaivostoiminnan eri vaiheet.

Louhinta ja malmin kuljetus

Arvomineraaleja sisältävä malmi irrotetaan kallioperästä louhimalla siten, että srvoaineiden pitoisuus malmissa on taloudellisesti riittävä. Louhinkatekniikasta riippuen malmin irrottaminen edellyttää myös arvottoman sivukiven louhimista. Sivukiven määrä rajoitetaan jatkoprosessin syötteessä mahdollisimman vähäiseksi, jossa rikastusprosessin kapasiteetti olisi mahdollisimman taloudellinen ja tehokas. Louhinnassa ei ole hyväksyttävää tuhlata luonnonvaroja esimerkiksi hyödyntämällä vain kaikkein rikkain osuus malmiesiintymästä ja jättämällä köyhemmät ja vähemmän kannallatav osat louhimatta, tai ohjaamalla ne sivukiven mukaan. Tämä edellyttää louhinnan jatkuvaa optimointia metallie hintojen, louhinta-, rikastua- sekä kaivannaisjätteiden käsittelykustannusten perusteella.

Jos malmiesiintymä yltää maanpintaan tai sijaitsee lähellä maanpintaa, louhintamenetelmänä käytetään avolouhintaa. Syvemmällä oleva malmi louhitaan yleensä maanalaisin menetelmin. Usein tuotanto aloitetaan avolouhintana ja siirrytään syvemmälle edetessä maanalaiseen louhintaan. Mikäli malmiesiintymä sijaitsee kokonaisuudessaan syvällä, louhintaa ei voida tehdä lainkaan avolouhintana.

Avolouhinnassa louhitaan louhintatekniikasta johtuen yleensä suuria määriä sivukiveä, sillä louhoksen seinämien pitäminen turvallisena edellyttää louhoksen laajentamista syvemmälle mentäessä. Malmi-sivukivisuhde vaihtelee kotimaisilla metallimalmikaivoksilla 1:1-1:14,5. Toiminnan alkuviosina sivukiven määrä on tavallisesti pienempi kuin myöhemmissä vaiheissa. Sivukiven ja malmin erottamisessa on haasteellista, ettei rikastusprosessin syöte laimene liikaa. Mikäli malmiesiintymä ulottuu syvälle, arvioidaan, onko louhosta kannattavaa laajentaa edelleen, vai onko siirryttävä maanalaiseen louhintaan.

Avolouhinta voidaan tehdä esim. pengerlouhintana, paikalleen räjäyttämällä, nosturilouhintana, iskuvasaralouhintana tai suorana kauvina. Näistä pengerlouhinta on yleisimin käytetty menetelmä suomalaisilla kaivoksilla. Pengerlouhinnan työvaiheita ovat irrotus, rikotus ja louheen lastaus ja kuljetus. Irrotuksessa kivi irrotetaan kalliosta poraamalla ja räjäyttämällä. Rikotuksessa ylisuuret kivet särjetään lastaukseen ja murskaukseen sopiviksi. Pengerlouhinta etenee tasapaksuin penkerein ylhäältä alaspäin, ja penkereet yhdistetään toisiinsa ajoteillä, joita pitkin malmi ja sivukivi kuljetetaan murskaamolle.

Paikalleen räjäyttäminen on pengerlouhinnan muutos, jossa malmia ei lastata ennen seuraavaa räjäytystä. Se soveltuu käytettäväksi mm. loivakaateisille malmeille, joilla on malmikerrosten välissä raakkukerros, sekä kapeille juonimalmeille ja massiivisten malmien suurmittaiseen louhintaan. Menetelmän etuna on lastauksen selektiivisyys, jolla varmistetaan malmin tarkka talteensaanti ja vähäinen raakkulaimennus. Paikalleen räjäyttämistä käytetään esim. Kittilän kultakaivoksella.

Suomen metallikaivoksilla avolouhosten enimmäissyvyys vaihtelee yleensä välillä 150-200 m, ja pengerkorkeus on tavallisimmin välillä 14-15 m. Talvivaaran nikkelikaivoksen suunniteltu syvyys on 300 m.

Maanalaisessa kaivoksessa sivukiviä louhitaan mahdollisimman vähän (malmi-sivukivisuhde esim. Kemin kaivoksella 1:0,5-0,4 ja Pyhäsalmella 1:0,05-0,04). Kuolut ja kulkuväylät louhitaan yleensä sivukiveen. Sivukiviä ei kuitenkaan tavallisesti kujleteta maanpinnalle, vaan ne käytetään maanalaisessa kaivoksessa tyhjien louhostilojen täyttönä ja tukena. Maanalaisessa kaivoksessa malmin louhinnassa käytettävät menetelmät ja tekniikat riippuvat malmiesiintymän sijainnista ja muodosta sekä kalliomekaanisista tekijöistä. Myös malmin arvo ja louhintakustannukset sekä ympäristönäkökohdat vaikuttavat louhintamenetelmän valintaan.

Maanalaisessa louhinnassa yleisesti käytettävät menetelmät jaetaan kolmeen pääluokkaan:

1.Avoimet menetelmät (louhospilarein tuetut)

  • Pilarilouhinta
  • Välitasolouhinta
  • Pengerlouhinta

2.Täyttömenetelmät

  • Lyhytreikätäyttölouhinta
  • Pengertäyttölouhinta
  • Makasiinilouhinta

3.Sorrosmenetelmät

  • Levysorroslouhinta
  • Lohkosorroslouhinta

Maanalaisessa louhinnassa tyhjiä louhoksia sekä tunneleita tuetaan sortumien estämiseksi. Tukeminen tehdään esimerkiksi täyttämällä louhostulat sivukivellä ja rikastushiekasta erotetulla "kaivostäytteellä", johon on yleensä lisätty kovettvia lisäaineita (esim. senemttiä, kalkkia, lentotuhkaa tai masuunikuonaa). Tunneleiden tukemiseksi käytetään esim. tunnelin seiniin upotettuja pitkiä pultteja, betonointia ja/tai rappausta.

Louhintaporauksessa käytetään nykyään pitkälle automatisoitua, tehokasta, sähköllä ja paineilmalla toimivaa kalustoa. Poratut ja painostetut kentät räjäytetään yleensä tietyn vakiintuneen aikataulun mukaisesti, aiheuttamatta vaaraa henkilöturvallisuudelle. Etenkin avolouhinnan yhteydessä räjäytysaikataulua rajoitetaan usein lupamääräyksillä mahdollisten meli- ja tärinähaittojen ehkäisemiseksi.

Sekä maanalaisessa että avolouhinnassa louhinta ulottuu pohjaveden pinnan alapuolelle. Louhostiloja pidetään kuivala pumppaamalla louhokseen kertyvää pohjavettä kaivoksesta maanpinnalle.

Maanalaisten kaivosten ilmanvaihto järjestetään puhaltamalla pääpuhaltimella raitista ilmaa tuuletuskuilun kautta maanalaisiin tiloihin. Kaivosperät tuuletetaan maan alla olevilla puhaltimilla ja tuuletustorvilla. Vanhoissa runsaasti tunneliverkostoa käsittävissä kaivoksissa tuuletusjärjestelmä voi olla hyvinkin monimutkainen ja sen toiminka edellyttää automatiikkaa ja tarkkaa valvontaa. Talvisaikaan tuuletusilmaa lämmitetään tuuletusnousun jäätymisen estämiseksi. Syvissä kaivoksissa lämpötilaa puolestaan jäähdytetään kesäaikaan tuuletusilman liiallisen lämpenemisen estämiseksi.

Malmi siirretään avolouhoksista käsiteltäväksi kuorma-autoilla, dimppereilla tai kiviautoilla, joskus myös hihnakulmettimilla. Mikäli avolouhitaa tehdään yhtä aikaa maanalaiseen louhinnan kanssa, voidaan avolouhoksesta louhittu malmi myös pudottaa kaatonousun kautta maanalaiseen kaivokseen, josta se nostetaan yhdessä maan alta louhitun malmin kanssa. Maanalaisesta kaivoksesta malmi siirretään nostolaitteella (hissi), autolla tai hihnakuljettimella, tai niiden yhdistelmällä.

Toisinaan kaivos saattaa sijaita jopa kymmenen kilometrin päässä rikastuslaitoksesta. Tällöin malmi kuljetetaan kaivokselta rikastamolle maanteitse tai rautateitse, jos kuljetusmatkat ovat erittäin pitkiä tai jos kuljetettavat materiaalimäärät ovat suuria. Enonkosken kaivoksella, jossa kaivos ja rikastamo sijaitsevat spivasti vesireittien varrella, malmi kuljetettiin aikoinaan laivalla.

Louhinta- ja kuljetusmenetelmät sekä louhinnassa käytettävät räjähdysaineet Suomessa toimivilla metallimalmikaivoksilla

Kaivos Louhintamenetelmä ja -tekniikka Räjähdysaine Räjähdysaine Malmin kuljetus
Kemin kaivos Avolouhot (lopetettu 2005)

Maanalainen kaivos, Pengertäyttölouhinta

Kemiitti 510 emulsio 0,2 kg/t

0,14 kg/t

Kuorma-autokuljetus

Nosto hissillä

Kittilän kaivos Avolouhos ja maanalainen kaivos Riogel-emulsio raakkukentissä 0,225 kg/t, malmissa 0,18 kg/t Kuorma-autokuljetus murskaamolle
Pyhäsalmen kaivos Maanalainen kaivos, välitaso- ja pengerlouhinta Kemiitti 810 0,33 kg/t Nosto hissillä, hihnakuljettimet
Talvivaaran kaivos Avolouhos Kemiitti 510 emulsio 0,25-0,28 kg/t Kuorma-autokuljetus esimurskaimeen
Oriveden kaivos Maanalainen kaivos Kemiitti 510 emulsio 0,3-0,6 kg/m^3 Kuorma-autokuljetus Sastamalaan, 85 km
Jokisivun kaivos Avolouhos, pengerlouhinta Dynamiitti Anfo Kemix-A 0,3-0,6 kg/m^3 Kuorma-autokuljetus Sastamalaan, 40 km
Lanhaslammen kaivos Avolouhos Kemiitti 510 emulsio 0,25 kg/m^3 Kuorma-autokuljetus esimurskaimeen

Murskaus ja seulonta

Louhitun malmin kappalekoko pienennetään murskauksella jatkokäsittelyyn sopivaksi. Maanalaisessa louhinnassa malmikivi esimurskataan nostolaitteille sopivaksi ennen malmin nostoa maanpinnalle. Mikäli malmi kuljetetaan kaivoksesta rikastamolle kuorma-autoilla, ylisuuret kappaleet rikotaan ennen kuljetusta ja ensimmäinen varsimeinen murskausvaihe tehdään maan pinnalla sijaitsevassa murskaamossa. Ensimmäistä murskausvaihetta nimitetään esi- tai karkeamurskaukseksi, ja tavallisesti siihen käytetään leuka- tai karamurskaimia.

Tämän jälkeen murskausprosessi riippuu jauhatus- tai muusta käsittelyprosessista. Normaalisti murskauspiiri koostuu murskaimista ja seuloista, jotka on kytketty piiriin siten, että piiristä ulos tulevan materiaalin raekoko on halutulla tasolla. Materiaalni voidaan toisinaan jakaa esimurskauksen jälkeen eri raeluokkiin myös pelkästään seulomalla. Useimmiten malmi murskataan yhdessä tai useammassa vaiheessa hienommaksi ennen jatkokäsittelyä.

Hienomurskaukseen käytetään yleisimmin kartiomurskaimia ja seulontaan täryseulakoneita, joihin on asennettu yksi tai useampia seulakokoja. Murskaus- ja seulontapiiri on toisinaan rakennettu ulkotiloihin ilman varsinaisia rakennuksia. Tämä ratkaisu antaa haasteita sekä ympäristönsuojelulle että toiminnalle vaikeissa sääolosuhteissa.


Murskaus ja seulonta Suomessa toimivilla metallimalmikaivoksilla

Kaivos/tuotantolaitos Murskaus ja seulonta
Kemin kaivos 3-vaiheinen murskaus, joista 1- vaihe maan alla (karamurskain), 2. vaihe avoimena piirinä (STD-kartiomurskain) ja 3. vaihe avoimena piirinä (SH-kartiomurskain)
Kittilän kaivos 1-vaiheinen murskaus maan pinnalla (leukamurskain)
Pyhäsalmen kaivos 1-vaiheinen murskaus maan alla (laukamurskain), seulonta kolmeen raeluokkaan maan päällä, tarvittaessa jakeidem lisämurskaus seulonnan/jauhatuksen yhteydessä (kartiomurskain)
Talvivaaran kaivos Esimurskaus karamurskaimella, kuljetus välivarastoon, 3-vaiheinen hienomurskaus kartiomurskaimella, joista kaksi viimeistä vaihetta suljetussa piirissä seulontakoneiden kanssa, murskatun tuotteen raekoko 80% alle 8 mm
Sastamalan rikastamo 3-vaiheinen murskaus: 1. vaihe leukamurskain, 2. vaihe karamurskain ja 3. vaihe kartiomurskain, jotka toimivat avoimena, lisäksi piirissä täryseula, joka erottelee valmiin hienon tuotteen jauhatukseen
Lahnaslammen kaivos 2-vaiheinen murskaus, esimurskaus leukamurskaimella, toisessa vaiheessa iskupalkkimurskain

Jauhatus

Rikastus

Vaahdotus

Ominaispainoerotus

Liuotusmenetelmät

Magneettierotus

Rikasteen kuivaus, varastointi ja kuljetus

Energiankulutus ja sen tehokkuus

Veden käyttö

Tarveaineiden kulutus

Kaivoksen sulkeminen ja jälkihoito