Ero sivun ”Ilmastonmuutoksen terveysvaikutukset Suomessa” versioiden välillä

Opasnet Suomista
Siirry navigaatioon Siirry hakuun
(uusi versio synteesistä päivitetty)
pEi muokkausyhteenvetoa
 
(22 välissä olevaa versiota 4 käyttäjän tekeminä ei näytetä)
Rivi 3: Rivi 3:
== Kysymys ==
== Kysymys ==


Mitkä ovat ilmastonmuutoksen terveysvaikutukset Suomessa?
Mitkä ovat ilmastonmuutoksen, siihen sopeutumisen ja sen torjunnan terveysvaikutukset Suomessa?


Lisäkysymys: Mitä tutkimusta on tästä aiheesta meneillään?
Lisäkysymys: Mitä tutkimusta on tästä aiheesta meneillään ja mitä pitäisi tutkia?


==Vastaus==
==Vastaus==


2.4. Terveys ja hyvinvointi
2.4. Terveys  


2.4.1. Terveys
Hallitustenvälinen ilmastopaneeli (IPCC) ja WHO ovat todenneet, että ilmastonmuutos vaikuttaa maailman tautikuormaan jo nyt ja että ilmastoon liittyvä altistuminen vaikuttaa miljoonien ihmisten terveyteen tulevaisuudessa. Erityisesti tämä koskee niitä ihmisiä, joiden sopeutumiskyky on alentunut
(Confalonieri ym, 2007)<ref>Confalonieri, U., B. Menne, R. Akhtar, K.L. Ebi, M. Hauengue, R.S. Kovats, B. Revich and A. Woodward, 2007: Human health. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 391-431.</ref>.
IPCC on myös suosittanut sopeutumiskyvyn lisäämistä joka puolella maailmaa. Kuitenkin ilmastonmuutoksen sopeutumispolitiikkoja tutkitaan liian vähän monien terveysvaikutusten ja haittojen suhteen.


Ilmaston lämmetessä helteen aiheuttamien terveysongelmien voidaan odottaa yleistyvän ja toisaalta kylmyyteen liittyvien terveysongelmien vähenevän. Rankkasateiden yleistyminen voi lisätä talousvesien pilaantumisen riskiä ja hyönteisten tai muiden eläinvälitteisten tautien levinneisyydessä voi tapahtua muutoksia. Talvisin pilvisyys lisääntyy ja lumipeite vähenee; aiempaa synkemmät talvet voivat pahentaa mielenterveysongelmia. Ilmastonmuutoksen kielteisiin terveysvaikutuksiin voidaan varautua kehittämällä mm. varoitusjärjestelmiä ja terveydenhuolloin toimia tietyissä säätilanteissa.
Ilmastonmuutoksella sekä ilmastonmuutoksen torjuntaan ja sopeutumiseen suunnatuilla toimilla on erittäin moninaiset ja potentiaaliset merkittävät vaikutukset suomalaisten terveyteen ja hyvinvointiin. Mm. kaikki tässä raportissa käsitellyt tekijät heijastuvat tavalla tai toisella terveyteen ja hyvinvointiin. Toisaalta suomalaisten terveys ja hyvinvointi ovat merkittävä motivaatio ja liikkeelle paneva voima sopeuduttaessa ilmastonmuutokseen ja torjuttaessa sitä.  


ACCLIM-projektin tuloksia voidaan kuitenkin hyödyntää myös terveysvaikutusten arvioinneissa suuntaa-antavasti.)
Ilmastonmuutoksen sopeutumis- ja torjuntatoimien suuntaamiseksi on oleellista edes karkealla tasolla pyrkiä määrällisesti arvioimaan eri toimenpiteiden hyötyjä ja haittoja. Tässä priorisoinnissa ihmisen terveys on eri sektorit ylittävä arviointikriteeri, aivan samalla tavalla kuin rahalliset kustannukset. Valitettavasti ilmastonmuutoksen, sen torjunnan ja siihen sopeutumisen terveysvaikutuksia on Suomessa selvitetty erittäin vähän.  


Suurimmat ilmastonmuutoksen aiheuttamat terveys- ja muut haitat kohtaavat juuri köyhiä eteläisiä maita, joilla on huonoin kyky vastata näihin haasteisiin. On siis odotettavissa, että jossain päin maailmaa nähdään isojakin yhteiskunnallisia järistyksiä, joiden välilliset vaikutukset tuntuvat kaukana maapallon eri kolkilla. Suomessa merkittävimmät ilmastonmuutoksen liittyvät terveysvaikutukset ovatkin todennäköisesti epäsuoria, kansainväliseen taloudelliseen tilanteeseen tai pakolaisuuteen liittyviä. Ilmastopakolaisten määrää tai vaikutuksia maailmankauppaan on vaikea arvioida, mutta on mahdollista että ne ovat hyvin suuria.


Lämpötilan ääripäät lisäävät rasitusta
Vaikka tietopuutteita on, näyttää toisaalta selvältä, että yleinen pyrkimys järjestelmien hyvään sopeutumiskykyyn ja sitkeyteen (engl. resilience) on joka tapauksessa eduksi. Voimme erehtyä siinä, johtuvatko suurimmat ilmastonmuutoksen terveyshaitat vesiepidemioista, hellejaksoista tai ehkä maastopaloista, mutta suomalaisen yhteiskunnan kannattaa edistää ihmisten valveutuneisuutta ja kykyä suojautua näiltä haitoilta ja toisaalta edistää terveydenhuollon kapasiteettia vastata suuriin, äkillisiin tai muuttuviin terveyshaittoihin.


Sään ja ilmaston terveysvaikutuksista parhaiten tunnetaan kuolleisuuden lämpötilariippuvuus, joka on U-muotoinen, siten että lämpötilan molemmat ääripäät – helleaallot ja kylmyys – lisäävät kuolleisuutta pääasiassa sydän- ja hengitystiesairauksien seurauksena. Kylmällä säällä verisuonet supistuvat, mikä nostaa verenpainetta. Kuumalla säällä sydämen työmäärä kasvaa lisääntyneen pintaverenkierron ylläpitämiseksi: pitkäkestoissa kuumassa sydän kuormittuu, koska palautuminen on riittämätöntä. Äärikuumassa myös veren viskositeetti voi kohota ja lisätä siten riskiä verenkierron häiriöihin. Kuolleisuudessa on nähtävissä myös selkeä vuodenaikaisvaihtelu, siten että kuolleisuus on keskimäärin korkeampi talvipuolella vuotta kuin kesäaikana. Kuolleisuuden kasvua talvisin selitetään myös hengitystieinfektioilla ja sydämen lisärasituksella, joka johtuu kohonneesta verenpaineesta ja lisääntyneestä fyysisestä kuormituksesta. Suomen nykyisessä ilmastossa helteen arvioidaan aiheuttavan keskimäärin 100–200 ylimääräistä kuolemantapausta ja kylmyyden 2000–3000 (Näyhä, 2005).
Tarkasteltaessa ilmastonmuutoksen terveysvaikutuksia on tärkeä tarkastella samanaikaisesti myös ilmastonmuutoksen sopeutumisen ja sen torjunnan terveysvaikutuksia. Oleellista olisi pyrkiä identifioimaan n.s. win-win politiikoita, jotka sekä torjuvat ilmastonmuutosta että muutenkin edistävät kansanterveyttä ja toisaalta välttää politiikoita, jotka torjuvat ilmastonmuutosta kansanterveyden kustannuksella. Näyttääkin siltä, että huomattava osa järkevän ilmastonmuutospolitiikan kustannuksista voidaan saada takaisin parantuneena kansanterveytenä
(IPCC 2007b)<ref>IPCC, 2007b: Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability. Chapter 8: Human health. http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch8.html</ref>.


Ihmiset myös sopeutuvat omaan ilmastoonsa, mikä näkyy siten, että lämpimään ilmastoon tottuneet ovat herkempiä kylmyydelle kuin suomalaiset ja toisaalta helteen vaikutus kuolleisuuteen alkaa näkyä Suomessa alemmilla lämpötiloilla kuin lämpimämmissä ilmastoissa. Suomessa kuolleisuus on pienimmillään vuorokauden keskilämpötilan ollessa n. 14 astetta. Ilmastonmuutoksen seurauksena helleaaltojen aiheuttamien kuolemantapausten voidaan odottaa lisääntyvän tulevaisuudessa, vaikka ihmiset sopeutuvatkin jossain määrin muuttuvaan ilmastoon. Toisaalta ilmastonmuutoksen myönteisenä seurauksena kylmän sään aiheuttamien terveysongelmien odotetaan jonkin verran vähenevän. (Hassi ja Rytkönen, 2005).
Monet nyky-yhteiskunnan valtatrendeistä sekä edistävät ilmastonmuutosta että huonontavat kansanterveyttä. Hyvä esimerkki on runsas yksityisautoilu lyhyillä matkoilla. Siirtyminen enemmän kävelemiseen tai pyöräilyyn merkittävästi torjuisi ilmastonmuutosta ja vähentäisi muitakin pakokaasupäästöjä, mutta suurin kansanterveyshyöty tulisi lisääntyneestä liikunnasta ja alentuneesta sydän- ja verisuonitautiriskistä.  


Heinäkuun 2010 helleaallon voidaan arvioida lisänneen kuolleiden määrää noin 400:lla (Kuva xx) Helleaalto oli poikkeuksellinen monella tavoin. Sen aikana mitattiin uusi lämpöennätys ja uusia heinäkuun kuukausikeskilämpötilaennätyksiä. Mutta terveysvaikutusten kannalta oleellisempaa oli hellejakson pituus ja laajoilla alueilla lämpötila kohosi useana päivänä peräkkäin jopa yli 30 asteen. Todennäköisyyslaskelmien mukaan nykyisessä, jo muuttuneessa ilmastossa kesän 2010 kaltainen hellekesä koettaisiin vain kerran elämässä. Ilmastonmuutoksen edetessä todennäköisyys kasvaa ja tällainen kesä koettaisiin vuosisadan puolivälin arvioidussa, muuttuneessa ilmastossa jopa kerran 10–15 vuodessa. (Räisänen, 2010)
Välittömistä terveysvaikutuksista merkittävimmiksi uhkaavat nousta huonosti suunnitellut ilmastonmuutoksen torjuntatoimet. Varoittava esimerkki on voimakkaasti lisääntynyt puun pienpolton asuntojen lämmityksessä. Erityisesti koska pienpolttolaitteiden tehokkuutta ei lainkaan säädellä, tämä lisää voimakkaasti pienhiukkaspäästöjä ja siten sydän- ja verisuonitautiriskejä. Jos sen sijaan puu poltettaisiin kokonaan ja puhtaasti voimalaitoksissa, joissa on tehokas päästöjen puhdistus, päästöt voitaisiin pitää kurissa
(Pekkanen, 2010)<ref>Pekkanen J: Suomen Lääkärilehti 2010 (65): 43: 3469.</ref>.


Merkittävä osa ilmastonmuutoksen yhteiskunnallisista vaikutuksista on suoria tai välillisiä vaikutuksia terveyteen ja hyvinvointiin. Tärkeimpiä ilmastonmuutoksen aiheuttamia, terveyteen vaikuttavia tekijöitä ovat
1) äärilämpötilat (toisaalta helteiden lisääntyminen, toisaalta kylmien jaksojen vähentyminen),
2) siitepölyjen lisääntyminen,
3) ilmansaasteet erityisesti lisääntyvien maastopalojen takia,
4) talousveden mikrobikontaminaatioiden yleistyminen mm. rankkasateiden takia,
5) syanobakteerien (sinileväkukintojen) lisääntyminen uimavesissä (tämä aihe käsitellään talousveden yhteydessä),
6) äärimmäiset sääilmiöt ja liukkaus (myrskyt, tulvat, nollakeli),
7) vektorivälitteisten ja muiden infektioita aiheuttavien mikrobien yleistyminen.
8) kaamoksen syveneminen lumipeitteen vähentyessä ja pilvisyyden lisääntyessä,


Erityisesti Suomessa mutta myös maailmanlaajuisesti tarvitaan lisätietoa terveysvaikutuksista useiden sellaisten ympäristöaltisteiden osalta, joiden arvellaan lisääntyvän ilmastonmuutoksen takia. Tätä tietoa tarvitaan ohjaamaan sopeutumistoimenpiteitä ja -politiikkoja. Kööpenhaminan ilmastokokous vuonna 2009 osoitti, että yhteiskunta osaa hyödyntää ilmastonmuutokseen liittyvää tieteellistä tietoa vain puutteellisesti. Ilmastonmuutoksen osalta pitäisikin siis lisätä sekä tietoa vaikutuksista ja tarvittavista toimenpiteistä että kykyä toimia tieteellisen tiedon ja siitä nousevien päätelmien mukaisesti.


Terveys ja hyvinvointi on lopulta monen eri tekijän lopputulos, ja siihen vaikuttavat myös muutokset yhteiskunnissa. Sopeutuminen uusiin oloihin vaatii poliittisia, lainsäädännöllisiä ja päivittäisiin toimintatapoihin liittyviä toimia. Ilmastonmuutoksen akuutteihin terveysvaikutuksiin voidaan myös varautua kehittämällä varoitusjärjestelmiä ja terveydenhuollon toimia tietyissä säätilanteissa.


Tässä luvussa esitellään lyhyesti näitä terveyteen vaikuttavia tekijöitä. Samat tiedot on esitetty myös THL:n ylläpitämässä verkkotyötila Opasnetissä (http://fi.opasnet.org/fi/Ilmastonmuutoksen_terveysvaikutukset_Suomessa), jonne tietoa päivitetään ja jossa asioista voi käydä avointa ja kriittistä keskustelua.




'''Ilmaston terveyshaittojen tutkimus on lisääntymässä


Tuoreet hankkeet Euroopassa ovat tutkineet ilmastonmuutoksen hillintätoimien terveyshyötyjä (esim. Rypdal ym., 2007)
<ref name="rypdal2007">Rypdal, Kristin, Nathan Rive, Stefan Åström, Niko Karvosenoja, Kristin Aunan, Jesper L. Bak, Kaarle Kupiainen and Jaakko Kukkonen, 2007. Nordic air quality co-benefits from European post-2012 climate policies. Energy Policy 35 (2007) 6309–6322. www.elsevier.com/locate/enpol</ref>,
mutta harvemmat ovat tutkineet sopeutumistoimien terveysvaikutuksia useiden tekijöiden ja vaikutusten suhteen. Kuitenkin kansallinen sopeutumisstrategia (MMM, 2005)<ref>MMM, 2005. Ilmastonmuutoksen kansallinen sopeutumisstrategia [Marttila, V. ym. (toim.)], Maa- ja metsätalousministeriö, Helsinki, ladattu (16.11.2011): http://www.mmm.fi/fi/index/etusivu/ymparisto/ilmastopolitiikka/ilmastomuutos.html </ref> ja siihen liittyvä tutkimus
(Hassi ja Rytkönen, 2005)<ref name="hassi2005">Hassi, J. ja Rytkönen, M. 2005. Climate warming and health adaptation in Finland. FINADAPT Working Paper 7, Finnish Environment Institute Mimeographs 337, Helsinki, 22 pp. http://www.environment.fi/default.asp?contentid=165158&amp;lan=en</ref>
molemmat suosittelevat ilmastonmuutoksen terveysvaikutustutkimuksen lisäämistä Suomessa. Laadukkaista ympäristö- ja terveysaineistoista huolimatta tutkimusta ei ole Suomessa juuri tehty. Kansainvälisesti on tutkittu mm. ulko- ja sisäilmaan ja energiantuotantoon ja liikenteeseen liittyviä terveysvaikutuksia ilmastonmuutoksen näkökulmasta
(Markandya et al. 2009, Smith et al. 2009, Wilkinson et al. 2009)
<ref>Markandya A, Armstrong BG, Hales S, Chiabai A, Criqui P, Mima S, Tonne C, Wilkinson P. Public health benefits of strategies to reduce greenhouse-gas emissions: low-carbon electricity generation. Lancet. 2009 Dec 12;374(9706):2006-15. http://pubmed.gov/19942282 </ref>
<ref>Smith KR, Jerrett M, Anderson HR, Burnett RT, Stone V, Derwent R, Atkinson RW, Cohen A, Shonkoff SB, Krewski D, Pope CA 3rd, Thun MJ, Thurston G. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet. 2009 Nov 24.</ref>
<ref>Wilkinson P, Smith KR, Davies M, Adair H, Armstrong BG, Barrett M, Bruce N, Haines A, Hamilton I, Oreszczyn T, Ridley I, Tonne C, Chalabi Z. Public health benefits of strategies to reduce greenhouse-gas emissions: household energy. Lancet. 2009 Dec 5;374(9705):1917-29. http://pubmed.gov/19942273</ref>.


Kuva xx. Kuolleet kuukausittain touko-syyskuussa 2003–2010. Lähde: Tilastokeskus
Käynnissä oleva Akatemian rahoittama projekti CLAIH (http://en.opasnet.org/w/Claih) tuottaa tietoa ihmisen toiminnan aiheuttamista pienhiukkasista ja niiden vaikutuksista useissa tulevaisuuden ilmastoskenaarioissa. Tutkimus tarkastelee biomassan energiakäyttöä ja erityisesti puun pienpolttoa, energiansäästötoimia, pienhiukkasia, otsonia, kasvihuonekaasuja ja rakennusten kosteusvaurioita. Lisäksi toinen akatemiaprojekti MAVERIC (http://www.ymparisto.fi/default.asp?contentid=318210&lan=en&clan=en) tarkastelee alueellisten tapaustutkimusten avulla vanhusten sopeutumiskykyä äärilämpötiloihin. ISTO-tutkimushankkeen ACCLIM-projekti (http://ilmatieteenlaitos.fi/acclim-hanke) tutkii nykyilmaston ääri-ilmöiden vaihtelua ja arvioi keskeisten säätekijöiden muutoksia tuleville vuosikymmenille. Näitä tietoja voidaan hyödyntää suuntaa-antavasti myös hellevaikutusten ja muiden terveysvaikutusten arvioinneissa.


===Helteet ja kylmyys===


Lämpötasapaino on monen tekijän summa
'''Lämpötilan ääripäät lisäävät rasitusta


Ihmisen lämpötasapainoon vaikuttaa kolme päätekijää: ympäristön lämpöolot, elimistön lämmöntuotanto (perusaineenvaihdunta ja lihastyö) ja vaatetuksen lämmöneristävyys. Vaatetuksen ja lihastyön määrää vaihtelemalla pystytään toimimaan laajasti vaihtelevissa olosuhteissa. Kuuma kuormittaa ennen kaikkea sydäntä ja saattaa vaikeuttaa nestetasapainon ylläpitoa. Kylmässä alkaa toimintakykyä rajoittaa ensin raajojen kärkiosien jäähtyminen ja raskaassa työssä ylähengitysteiden supistuminen. Kylmä nostaa myös verenpainetta. Pitkäkestoisen kylmätyön uskotaan aiheuttavan tai pahentavan tuki- ja liikuntaelimistön oireita. Vaikka tästä on paljon havaintoja, on kylmän ja oireiden yhteyttä vaikea osoittaa oireiden pitkän kehittymisajan vuoksi.
Sään ja ilmaston terveysvaikutuksista parhaiten tunnetaan kuolleisuuden lämpötilariippuvuus, joka on U-muotoinen siten, että lämpötilan molemmat ääripäät – helleaallot ja kylmyys – lisäävät kuolleisuutta pääasiassa sydän- ja hengitystiesairauksien seurauksena
(mm. Kovats ja Hajat, 2008)
<ref>Kovats, R.S. and Hajat, S. 2008. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 29: 9.1–9.15.</ref>.  
Kylmällä säällä verisuonet supistuvat, mikä nostaa verenpainetta. Kuumalla säällä sydämen työmäärä kasvaa lisääntyneen pintaverenkierron ylläpitämiseksi: pitkäkestoissa kuumassa sydän kuormittuu, koska palautuminen on riittämätöntä. Äärikuumassa myös veren viskositeetti voi kohota ja lisätä siten riskiä verenkierron häiriöihin. Kuolleisuudessa on nähtävissä myös selkeä vuodenaikaisvaihtelu, sillä kuolleisuus on keskimäärin korkeampi talvella kuin kesällä. Kuolleisuuden kasvua talvisin selitetään myös hengitystieinfektioilla ja sydämen lisärasituksella, joka johtuu kohonneesta verenpaineesta ja lisääntyneestä fyysisestä kuormituksesta. Suomen nykyisessä ilmastossa helteen arvioidaan aiheuttavan keskimäärin 100–200 ylimääräistä kuolemantapausta ja kylmyyden 2000–3000 (Näyhä, 2005)<ref name="näyhä2005">Näyhä S. 2005. Environmental temperature and mortality. ''Int. J. Cirumpolar Health'' 64: 451–458.</ref>.


Työelämässä kylmätyön rajana pidetään 10 °C lämpötilaa, jossa ääreisosat alkavat jäähtyä kevyessä työssä. Kylmän haittoja torjutaan asianmukaisella kylmänsuojavaatetuksella ja lämmittelytauoilla. Kuumatyön rajana pidetään 28 °C lämpötilaa. Sen yläpuolella täytyy pitää useampia ja pitkäkestoisempia taukoja. Kylmässä kevyt työ on riskialtista, koska lämmöntuotanto on vähäistä. Kuumassa puolestaan raskas työ on erityisen riskialtista sen aiheuttaman lämmöntuotannon vuoksi. Raskas työ voi kohottaa lämmöntuotantoa jopa yli 10-kertaiseksi perusaineenvaihduntaa verrattuna. Raskaat ja/tai vesihöyryä läpäisemättömät suojavarusteet lisäävät kuumakuormituksen riskiä jopa kylmässä. Erityisen sääherkkiä ovat ikääntyneet, pienet lapset, kroonisesti sairaat sekä lämmönsietoa heikentäviä lääkkeitä käyttävät.
Suomessa kuolleisuus on pienimmillään vuorokauden keskilämpötilan ollessa n. 14 astetta. Ilmastonmuutoksen seurauksena helleaaltojen aiheuttamien kuolemantapausten voidaan odottaa lisääntyvän tulevaisuudessa, vaikka ihmiset sopeutuvatkin jossain määrin muuttuvaan ilmastoon. Toisaalta ilmastonmuutoksen myönteisenä seurauksena kylmän sään aiheuttamien terveysongelmien odotetaan jonkin verran vähenevän. (Hassi ja Rytkönen, 2005)<ref name="hassi2005">Hassi, J. and Rytkönen, M. 2005. Climate warming and health adaptation in Finland. FINADAPT Working Paper 7, Finnish Environment Institute Mimeographs 337, Helsinki, 22 pp http://www.environment.fi/default.asp?contentid=165158&amp;lan=en.</ref>.


Ilmastonmuutoksen aiheuttaman hitaan keskilämpötilan muutoksen ei oleteta vaikuttavan suomalaisten terveyteen tai toimintakykyyn. Sen sijaan äärimmäiset ja/tai pitkät kylmä- ja kuumajaksot voivat olla terveysriski. Tavallista selvempiä vaikutuksia nähdään myös, kun vuodenajat vaihtuvat ja ensimmäinen kylmä- tai kuumajakso alkaa. Tähän on syynä fysiologisen sopeutumisen puuttuminen: sopeutuminen vie aikaa noin kaksi viikkoa. Kylmän ja kuuman suoranaisten vaikutusten lisäksi lämpöolot voivat vaikuttaa olemassa olevien sairauksien hoitotasapainoon.
Ihmiset myös sopeutuvat omaan ilmastoonsa, mikä näkyy siten, että lämpimään ilmastoon tottuneet ovat herkempiä kylmyydelle kuin suomalaiset ja toisaalta helteen vaikutus kuolleisuuteen alkaa näkyä Suomessa alemmilla lämpötiloilla kuin lämpimämmissä ilmastoissa. Äärilämpötilojen potentiaalinen vaikutus riippuu yksilön altistuksesta ja yksilöllisestä herkkyydestä, johon puolestaan vaikuttavat mm. ikä ja terveydentila
(Stafoggia ym., 2006)<ref>Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, Cadum E, Caranci N, de’Donato F, De Lisio S, De Moreno M, Michelozzi P, Miglio R, Pandolfi P, Picciotto S, Rognoni M, Russo A, Scarnato C, Perucci CA. Vulnerability to heat-related mortality. A multi-city, population based. case-crossover analysis. Epidemiology 2006; 17:315.323.  
</ref>.
Yksilöllisestä herkkyydestä on vain vähän tukimuksia.


On joitakin sellaisia tutkimuksia lämpötilan yhteydestä kuolleisuuteen, joissa on verrattu tilannetta Etelä- ja Pohjois-Suomessa
(esim. Näyhä, 2005)<ref name="näyhä2005">Näyhä S. 2005. Environmental temperature and mortality. ''Int. J. Cirumpolar Health'' 64: 451–458.</ref>
tai Suomessa ja jossakin toisessa maassa
(esim. Keatinge et al., 2000; Donaldson et al., 2003; Baccini et al., 2008)
<ref>Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, Mackenbach JP, Nayha S, Vuori . 2000. Heat-related mortality in warm and cold regions of Europe: observational study. ''BMJ ''321: 670-673.</ref>
<ref>Donaldson, G.C., Keatinge, W.R.and Nayha, S. 2003. Changes in summer temperature and heat-related mortality since 1971 in North Carolina, South Finland, and Southeast England. Environ. Res. 91:1–7.</ref>
<ref>Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., Anderson, H.R., Bisanti, L., D’Ippoliti, D., Danova, J., Forsberg, B., Medina, S., Paldy, A., Rabczenko, D., Schindler, C. and Michelozzi, P. 2008. Heat Effects on Mortality in 15 European Cities. Epidemiology 19(5): 711-719.</ref>
. Näiden tutkimusten mukaan nyky-Suomessa matalien lämpötilojen aiheuttama kuolleisuus on kertaluokkaa suurempi kuin korkeiden lämpötilojen. Ilmaston lämpeneminen voi siis olla terveydelle eduksi, mutta vielä ei ole järjestelmällisiä tutkimuksia, jotka huomioisivat sosioekonomiset, demografiset ja alueelliset muutokset Suomessa. Tällaisen tiedon tärkeys korostuu Euroopan 2003 helleaallon valossa, jossa nähtiin jopa kymmeniätuhansia ylimääräisiä kuolemia. Lisääntyvät ja voimistuvat helleaallot ovat yksi ilmastonmuutoksen varmoja merkkejä (IPCC, 2007a, b)
<ref>IPCC, 2007a: Summary for policymakers. In: ''Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ''\[Solomon, S. et al. (eds.)\]. Cambridge University Press, 1-18. </ref>
<ref>IPCC, 2007b: Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability. Chapter 8: Human health. http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch8.html</ref>.


Lämpöolot ovat hyvinvoinnin yksi perusta
Heinäkuun 2010 helleaallon voidaan karkeasti arvioida lisänneen kuolleiden määrää Suomessa noin 400:lla (Kuva xx). Helleaalto oli poikkeuksellinen monella tavoin. Sen aikana mitattiin uusi lämpöennätys ja uusia heinäkuun kuukausikeskilämpötilaennätyksiä. Mutta terveysvaikutusten kannalta oleellisempaa oli hellejakson pituus; laajoilla alueilla lämpötila kohosi useana päivänä peräkkäin jopa yli 30 asteen. Todennäköisyyslaskelmien mukaan nykyisessä, jo muuttuneessa ilmastossa kesän 2010 kaltainen hellekesä koettaisiin vain kerran elämässä. Ilmastonmuutoksen edetessä todennäköisyys kasvaa ja tällainen kesä koettaisiin vuosisadan puolivälin arvioidussa, muuttuneessa ilmastossa jopa kerran 10–15 vuodessa
(Räisänen, 2010)<ref>Räisänen, J., 2010: Ilmastonmuutos ja heinäkuun helteet. Ilmastokatsaus 9/2010, IL, s. 4-6 http://www.atm.helsinki.fi/~jaraisan/Heinakuu2010.pdf</ref>.


Sekä kylmä että kuuma vaikuttavat terveyteen erityisesti riskiryhmillä. Lämpöolojen vaikutukset hyvinvointiin ja toiminta/työkykyyn koskevat huomattavasti laajempia väestöryhmiä ja myös terveitä henkilöitä. Yksilölliset erot lämpötasapainon hallinnassa ovat suuria ja esim. tarkimminkin säädetyssä sisäilmastossa enintään 85 % tutkittavista kokee olonsa lämpöviihtyisäksi. Kun mennään kohti ääriolosuhteita, hyvinvointi, toimintakyky ja tuottavuus laskevat. Koetun työhyvinvoinnin ja työn tuottavuuden heikkenemisellä on havaittu yhteyksiä työympäristön lämpöoloihin myös muissa kuin fyysisissä töissä. Suomessa osataan lämmittää, mutta työtilojen viilentämiseen järkevästi ja taloudellisesti kannattavasti ei ole varauduttu.


Ilmastonmuutoksen vaikutuksista tarvitaan lisää tietoa töissä, joissa kuuma- tai kylmästressi ovat mahdollisia. Tällaisia ovat useimmat fyysisesti raskaat ulkotyöt, kuljetusala, pelastus- ja huoltotyöt, joita täytyy tehdä myös äärioloissa. Tietoa tarvitaan lämpöolojen vaikutuksesta toimintakykyyn, kuormittumiseen ja palautumiseen sekä tarvittavista suojaustoimenpiteistä. Saatavilla oleva tutkimustieto keskittyy pääosin miehiin. Kuitenkin paljon naisia työskentelee aloilla, joissa lämpökuormitus on mahdollista, esim. palvelu-, hoiva-, turva- ja siivousaloilla.
Kuva xx. Kuolleet kuukausittain touko-syyskuussa 2003–2010. Lähde: Tilastokeskus
Lisää tutkimustietoa tarvitaan myös ilmansaasteiden ja lämpöolojen yhteisvaikutuksista.  




Muutokset sateissa ja lämpötiloissa vaikuttavat monin tavoin
'''Lämpötasapaino on monen tekijän summa


Ilmastonmuutos voi vaikuttaa myös joidenkin tapaturmien määriin. Esim. liukas keli aiheuttaa nykyisin noin 50 000 tapaturmaa jalankulkijoille talvikauden aikana. Ilmaston muuttuessa voidaan suuressa osassa maata odottaa nollakelien yleistymisen lisäävän liukastumistapaturmien riskiä samalla kun eteläisimmässä osassa maata riski pienenee talven lyhetessä. (Ruuhela et al., 2005).  
Ihmisen lämpötasapainoon vaikuttaa kolme päätekijää: ympäristön lämpöolot, elimistön lämmöntuotanto (perusaineenvaihdunta ja lihastyö) ja vaatetuksen lämmöneristävyys. Vaatetuksen ja lihastyön määrää vaihtelemalla pystytään toimimaan laajasti vaihtelevissa olosuhteissa. Kuuma kuormittaa ennen kaikkea sydäntä ja saattaa vaikeuttaa nestetasapainon ylläpitoa. Kylmässä alkaa toimintakykyä rajoittaa ensin raajojen kärkiosien jäähtyminen ja raskaassa työssä ylähengitysteiden supistuminen. Kylmä nostaa myös verenpainetta. Pitkäkestoisen kylmätyön uskotaan aiheuttavan tai pahentavan tuki- ja liikuntaelimistön oireita. Vaikka tästä on paljon havaintoja, on kylmän ja oireiden yhteyttä vaikea osoittaa oireiden pitkän kehittymisajan vuoksi.


Rankkasateiden ja tulvien yleistyminen voi aiheuttaa uima- ja juomavesien saastumista; uutiskynnyksen ylittävien ongelmien lisäksi runsaat sateet voivat aiheuttaa paikallisia pienempiä terveysongelmia pintavesien päästessä saastuttamaan kaivoja. Kasvukauden piteneminen puolestaan näkyy mm. siitepölyallergioiden oireiden ilmaantuvuudessa.
Työelämässä kylmätyön rajana pidetään 10 °C lämpötilaa, jossa ääreisosat alkavat jäähtyä kevyessä työssä. Kylmän haittoja torjutaan asianmukaisella kylmänsuojavaatetuksella ja lämmittelytauoilla. Kuumatyön rajana pidetään 28 °C lämpötilaa. Sen yläpuolella täytyy pitää useampia ja pitkäkestoisempia taukoja. Kylmässä kevyt työ on riskialtista, koska lämmöntuotanto on vähäistä. Kuumassa puolestaan raskas työ on erityisen riskialtista sen aiheuttaman lämmöntuotannon vuoksi. Raskas työ voi kohottaa lämmöntuotantoa jopa yli 10-kertaiseksi perusaineenvaihduntaa verrattuna. Raskaat ja/tai vesihöyryä läpäisemättömät suojavarusteet lisäävät kuumakuormituksen riskiä jopa kylmässä. Erityisen sääherkkiä ovat ikääntyneet, pienet lapset, kroonisesti sairaat sekä lämmönsietoa heikentäviä lääkkeitä käyttävät.


Epäsuorasti ilmastonmuutos vaikuttaa vektorivälitteisten sairauksien leviämiseen ja määrään. Borrelioosi, Puutiasiaivokuume, myyräkuume, pogostantauti)…
Ilmastonmuutoksen aiheuttaman hitaan keskilämpötilan muutoksen ei oleteta vaikuttavan suomalaisten terveyteen tai toimintakykyyn. Sen sijaan äärimmäiset ja/tai pitkät kylmä- ja kuumajaksot voivat olla terveysriski. Tavallista selvempiä vaikutuksia nähdään myös, kun vuodenajat vaihtuvat ja ensimmäinen kylmä- tai kuumajakso alkaa. Tähän on syynä fysiologisen sopeutumisen puuttuminen: sopeutuminen vie aikaa noin kaksi viikkoa. Kylmän ja kuuman suoranaisten vaikutusten lisäksi lämpöolot voivat vaikuttaa olemassa olevien sairauksien hoitotasapainoon.


Muualla maailmassa voimakkaasti sääriippuvaisen malarian leviäminen mahdollisesti uusille alueille on merkittävä uhka. Vaikka Suomeen ei leviäisikään uusia vektorivälitteisiä sairauksia, matkailun seurauksena myös suomalaiset voivat altistua niille.


Terveys on lopulta monen eri tekijän lopputulos, jossa on otettava huomioon myös muutokset yhteiskunnissa. Ympäri maapalloa tapahtuvat muutokset kuivuudessa ja sateisuudessa näkyvät mm. ruoantuotannossa ja alueiden elinkelpoisuudessa. Tulevaisuudessa ympäristöpakolaisuus voi vaikuttaa myös suomalaisen lääkärin päivittäiseen työhön nykyistä enemmän.
'''Lämpöolot ovat hyvinvoinnin yksi perusta


Kaamosoireet ovat yhtä yleisiä koko maassa
Sekä kylmä että kuuma vaikuttavat terveyteen erityisesti riskiryhmillä. Lämpöolojen vaikutukset hyvinvointiin ja toiminta/työkykyyn koskevat huomattavasti laajempia väestöryhmiä ja myös terveitä henkilöitä. Yksilölliset erot lämpötasapainon hallinnassa ovat suuria ja esim. tarkimminkin säädetyssä sisäilmastossa enintään 85 % tutkittavista kokee olonsa lämpöviihtyisäksi. Kun mennään kohti ääriolosuhteita, hyvinvointi, toimintakyky ja tuottavuus laskevat. Koetun työhyvinvoinnin ja työn tuottavuuden heikkenemisellä on havaittu yhteyksiä työympäristön lämpöoloihin myös muissa kuin fyysisissä töissä. Suomessa osataan lämmittää, mutta työtilojen viilentämiseen järkevästi ja taloudellisesti kannattavasti ei ole varauduttu.


Päivän valoisa aika on talvella lyhyt koko maamme alueella. Suomessa 85 aikuista sadasta huomaa vuodenaikojen vaihtumisen vaikuttavan käyttäytymiseensä. Kaamosoireista tai talvisin masennusoireista kärsivien henkilöiden lukumäärä on asukasmäärään suhteutettuna yhtä suuri eri puolilla Suomea. Ongelma on siten yhtä suuri, asuttiinpa sitten missä päin Suomea tahansa. 40 henkilöä sadasta kokee vuosi toisensa jälkeen hyvinvointia heikentäviä oireita kuten unihäiriöitä, ruokahalun ja painon vaihteluita. Myös muutokset sosiaalisuudessa, mielialassa ja toimintatarmossa ovat yleisiä. Joka kymmenes suomalainen kärsii näiden kaamosoireiden lisäksi myös masennusoireista talven aikana. Talvi toisensa jälkeen toistuvaan kaamosmasennukseen sairastuu yhdeksän suomalaista tuhannesta.
Ilmastonmuutoksen vaikutuksista tarvitaan lisää tietoa töissä, joissa kuuma- tai kylmästressi ovat mahdollisia. Tällaisia ovat useimmat fyysisesti raskaat ulkotyöt, kuljetusala, pelastus- ja huoltotyöt, joita täytyy tehdä myös äärioloissa. Tietoa tarvitaan lämpöolojen vaikutuksesta toimintakykyyn, kuormittumiseen ja palautumiseen sekä tarvittavista suojaustoimenpiteistä. Saatavilla oleva tutkimustieto keskittyy pääosin miehiin. Kuitenkin paljon naisia työskentelee aloilla, joissa lämpökuormitus on mahdollista, esim. palvelu-, hoiva-, turva- ja siivousaloilla.  
 
Lisää tutkimustietoa tarvitaan myös ilmansaasteiden ja lämpöolojen yhteisvaikutuksista.  
Kaamosoireet altistavat myös fyysisille sairauksille
 
Sisätilavalaistus vaikuttaa siihen, missä määrin ruokahalu ja paino pyrkivät vaihtelemaan vuoden aikana. Etenkin lihominen toistuvasti aina talven aikana voi muutamassa vuodessa johtaa huomattavaan ylipainoon. Kaamosoireilu kasvattaakin niin kutsutun metabolisen oireyhtymän riskiä. Tämän takia keskivartalon liikakiloja, heikentynyttä sokerinsietoa ja korkeaa verenpainetta vastaan on mahdollista taistella paitsi kuntoa kohentavan liikunnan keinoin, myös kaamosoireita lievittävän valon avulla. Sisätilojen valaistusolosuhteilla on siten merkitystä myös ylipainon ja siitä johtuvien haitallisten terveysvaikutusten ehkäisylle.


Kun luonnon antamat aikamerkit joko puuttuvat, kuten pimeinä talviaamuina, tai kun elimistö lukee niitä epätäsmällisesti, kuten masentuneilla, sisäisen kellon toiminta kärsii rytmihäiriöistä. Valo on myös nopea ja tehokas keino kaamosoireita aiheuttavien sisäisen kellon rytmihäiriöiden estämiseen. Tästä huolimatta sisätilojen valaistus suunnitellaan niin uudisrakentamisen kuin korjausrakentamisen aikana edelleen vain visuaalisiin tarpeisiin. Näiden tarpeiden ohella valon terveysvaikutusten, jotka välittyvät silmien verkkokalvolta aivoille näköaistihavainnoista riippumatta, ymmärtäminen avartaisi valaistussuunnittelua ja antaisi keinon vaikuttaa laajamittaisesti terveyteen ja hyvinvointiin ihmisten arkiympäristössä.
'''Sopeutuminen
 
Itsemurhat kertyvät kevääseen
 
Itsemurhayritykset ovat Suomessa tavallisimpia keväällä ja itsemurhat alkukesästä. Sekä miehillä että naisilla itsemurhien vuodenaikaisvaihtelu korostuu sitä enemmän, mitä pienempi itsemurhien vuosittainen määrä on. Kun itsemurhia tehdään suhteellisen vähemmän, vuodenaikojen merkitys ja niihin liittyvien biologisten taustatekijöiden vaikutus tulee selvemmin esille. Eräs tällainen altistava tekijä saattaa talvikuukausina olla niukka valo, sillä mitä vähemmän ulkona on auringon globaalisäteilyä, sitä runsaammin itsemurhakuolemia talvikuukausina on.
 
Sitä vastoin keväisin ilmenevän itsemurhakuolleisuuden huipun tarkemmat syyt ovat edelleen tuntemattomia. Altistava tekijä kevätkuukausina saattaa vuorostaan olla valon runsaus, etenkin uni-valverytmin häiriöille altistava illasta pitenevä valoisa aika. Serotoniinin käyttö hermosolujen kemialliseen viestinsiirtoon on laiskinta talven aikana, mutta vilkastuu nopeasti auringonpaisteen voimistuessa keväällä, mikä voi johtaa mielialan heilahduksiin ja aistiharhoihin. Epäsuotuisissa olosuhteissa ilmaantuessaan ne suurentavat itsemurhariskiä.


Sopeutuminen
Iso osa hellekuolemista tapahtuu sairaaloissa, vanhainkodeissa, palvelutaloissa ja muissa julkisesti ylläpidetyissä kohteissa. Tämä johtuu yksinkertaisesti jo siitä, että helteelle herkät vanhukset ja sydänsairaat usein ovat tällaisissa laitoksissa. Tämä kuitenkin korostaa sitä, että laitoksissa tulisi kiinnittää erityistä huomiota lämpökuorman ehkäisyyn ja hoitamiseen. Rakennustekniikalla voidaan estää sisälämpötiloja nousemasta liian suuriksi, tärkeimpiin huoneisiin voidaan lisätä koneellista ilmastointia, ja henkilökunta voi valistaa ja huolehtia, että asiakkaat muistavat juoda riittävästi nestetyksen varmistamiseksi.


Ilmatieteen laitos on aloittanut kesällä 2011 hellevaroituspalvelun. Kolmiportaiset varoituskriteerit perustuvat helteen terveysvaikutuksiin ja ilmastotilastoihin. Koska kylmään säähän liittyvät kielteiset terveysvaikutukset alkavat jo Suomen ilmaston kannalta tavanomaisissa lämpöoloissa, pakkasvaroitusten kriteerit perustuvat ilmastotilastoihin. Pakkasvaroituksissa otetaan huomioon lämpötilan lisäksi tuulen vaikutus.
Ilmatieteen laitos on aloittanut kesällä 2011 hellevaroituspalvelun. Kolmiportaiset varoituskriteerit perustuvat helteen terveysvaikutuksiin ja ilmastotilastoihin. Koska kylmään säähän liittyvät kielteiset terveysvaikutukset alkavat jo Suomen ilmaston kannalta tavanomaisissa lämpöoloissa, pakkasvaroitusten kriteerit perustuvat ilmastotilastoihin. Pakkasvaroituksissa otetaan huomioon lämpötilan lisäksi tuulen vaikutus.


Hellevaroitukset ja niihin liittyvä muu tiedottaminen lisäävät kansalaisten tietoisuutta helteen kielteisistä terveysvaikutuksista, mutta sen lisäksi tulevaisuudessa on tarpeen parantaa. terveydenhuolloin toimintaa helleaaltojen ja pitkien kovien pakkasjaksojen aikaan.  
Hellevaroitukset ja niihin liittyvä muu tiedottaminen lisäävät kansalaisten tietoisuutta helteen kielteisistä terveysvaikutuksista, mutta sen lisäksi tulevaisuudessa on tarpeen parantaa terveydenhuolloin toimintaa helleaaltojen ja pitkien kovien pakkasjaksojen aikaan.  


EuroMomo…
Lisätietoa helteiden ja muiden akuuttien kuolleisuutta lisäävien tekijöiden kuten influenssaepidemioiden merkityksestä on luvassa EUROMOMO-projektista. Usean Euroopan maan yhteishanke kehittää reaaliaikaisia monitorointimenetelmiä kuolleisuuden seuraamiseen ja tutkimiseen. Tavoitteena on tuottaa tietoa myös riskinhallintaa parantamaan (www.euromomo.eu)<ref>Euromomo-projektin kotisivu http://www.euromomo.eu/</ref>.


===Siitepölyt ja allergiat===


Taloudelliset arviot
Ilmastonmuutos vaikuttaa kasvilajistoon ja siitepölyn määrään
Karoliina Pilli-Sihvola
(Ebi ym., 2009)<ref>Ebi, K.L., Burton, I., McGregor, G. (editors) (2009) Biometeorology for adaptation to climate variability and change. Springer, ISBN 978-1-4020-8920-6, 280pp.</ref>
ja sitä kautta siitepölyallergioihin. Tarkkaa vaikutusta ei kuitenkaan tunneta lukuisten asiaan vaikuttavien tekijöiden takia. Osa niistä on geologisia tai maantieteellisiä (maaperä, auringon säteilymäärät) ja siten ilmastonmuutoksesta riippumattomia, mutta osa on muuttuvia (lämpötila, pilvisyys, sademäärä, kasvukauden pituus). Siksi muutoksen suuntakin on epävarma ja voi vaihdella kasvilajeittain (esim. Damialis ym., 2007, Ranta ym., 2008)
<ref name="damialis2007">Damialis, A., Halley, J.M., Gioulekas, D., Vokou, D. (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmosph.Environ., 41, 7011-7021.</ref>
<ref name="ranta2008">Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., Oksanen, A. (2008) Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecol and Management, 255, 643-650.</ref>.


Ilmastonmuutoksen ja ilmastonmuutokseen sopeutumisen taloudellisia vaikutuksia terveyteen Suomessa ei ole tutkittu lainkaan. Aihetta on tutkittu myös maailmanlaajuisesti hyvin vähän. Joitain arvioita ilmastonmuutoksen vaikutuksista globaalilla tasolla on, mutta ne perustuvat pieneen määrään aineistoa, rajallisiin terveysvaikutuksiin ja Suomen kannalta epärelevantteihin vaikutuksiin, kuten muutoksiin malariaa kantavien hyttysten
Tärkeimmät siitepölykasvit Suomessa ovat koivu, heinät, leppä ja pujo, ja tulevaisuudessa mahdollisesti pujon sukulaiskasvit tuoksukit. Nämä sitkeät kasvit ovat peräisin Etelä-Euroopasta, mutta niitä on jo todettu Etelä-Ruotsissa. On mahdollista, että tuoksukit leviävät myös Suomeen.
esiintymisessä. Muuttuva ilmasto kuitenkin aiheuttaa terveyteen liittyviä taloudellisia vaikutuksia myös Suomessa. Kovien pakkasten ja helleaaltojen aiheuttamien kuolemantapausten määrien muuttuminen voi aiheuttaa taloudellisia vaikutuksia. Helleaallot voivat aiheuttaa
myös työtehokkuuden vähenemistä. Näiden vaikutusten vähentäminen voi olla kustannustehokas sopeutumiskeino. Lumipeitteen vähenemisen vuoksi talvet voivat pimentyä tämänhetkisestä, mikä vaikuttaa kaamosmasennukseen ja sitä kautta ihmisten työkykyyn. Tällä voi olla merkittäviäkin
kansantaloudellisia vaikutuksia. Tämänhetkisenkin tilanteen taloudellisten vaikutusten selvittäminen hyödyttäisi arvioiden tekemistä tulevasta tilanteesta.  


Talven keskilämpötilan noustessa nollan asteen ympärillä vaihtelevat säät voivat lisääntyä ja tällaisen sään raja siirtyä pohjoisemmaksi. Tällä hetkellä sairaalahoitoa (vähintään yksi vuorokausi) vaativien liukastumisonnettomuuksien määrän arvioidaan olevan vuosittain noin 5000, joista aiheutuu 30 000 sairaalahoitopäivää (Ruuhela et al., 2005). Kaiken kaikkiaan arviot sairaanhoitoa vaativien liukastumisonnettomuuksien määrästä vuosittain vaihtelevat suuresti, 40 000 – 100 000 välillä (VTT 2008). Talvikaudella 2003–2004 noin 68 prosenttia Töölön tapaturma-asemalla raportoiduista liukastumistapaturmista aiheutui työssä käyville ihmisille (20–59 vuotiaat), joten kustannukset yhteiskunnalle mahdollisista sairauspoissaoloista voivat olla merkittäviä. Lonkkamurtumia tapaturmista oli noin kuusi prosenttia.  
Ilmaston muuttuminen voi aiheuttaa kolmenlaisia muutoksia:
1) lyhytaikaisia vaikutuksia siitepölyn päästöihin ja leviämiseen
(mm. Sofiev ym., 2006)<ref name="sofiev2006">Sofiev, M., Siljamo, P., Ranta, H., Rantio-Lehtimäki, A. (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J. on Biometeorology, DOI 10 1007/s00484-006-0027-x, 50, 392-402.16.</ref>,
2) kasvukauden aikaisia muutoksia meteorologiassa, jotka vaikuttavat kukintaan (Siljamo ym. 2008)<ref>Siljamo,P., Sofiev,M., Ranta,H., Linkosalo,T., Kubin,E., Ahas,R., Genikhovich, E., Jatczak, K, Jato,V.,Nekovar,J., Minin,A., Severova,E., Shalaboda,V. (2008) Representativeness of point-wise phenological Betula data observed in different parts of Europe. Global Ecology and Biogeography, 17(4), 489-502, DOI: 10.1111/j.1466-8238.2008.00383.x.</ref>
3) pitkäaikaisia muutoksia kasvien levinneisyydessä tai kukinnassa (Ranta ym. 2008)<ref name="ranta2008">Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., Oksanen, A. (2008) Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecol and Management, 255, 643-650.</ref>.  


VTT on tehnyt arvion liukastumistapaturmien kustannuksista olettaen, että vuodessa tapahtuu noin 50 000 liukastumistapaturmaa. Näistä aiheutuvat kustannukset ovat 2,4 miljardia euroa olettaen, että yksi tapaturma maksaa noin 48 800 euroa. Tämä summa koostuu varsinaisesta sairaanhoidosta (n. 800 euroa), menetetystä työpanoksesta (n. 1400 euroa) ja hyvinvoinnin menetyksestä (n. 46 600 euroa). (VTT 2008.) Lonkkamurtumapotilaiden sairaanhoitokustannukset ovat huomattavasti suuremmat.  
Todennäköisesti siitepölyn määrä yleensä lisääntyy, ja tämä lisännee hengitysteiden allergiaoireita ja lääkitystä. Ei kuitenkaan juuri ole tutkimuksia siitä
(Schmier ja Ebi 2009)<ref>Schmier JK, Ebi KL. The impact of climate change and aeroallergens on children's health. Allergy Asthma Proc. 2009 May-Jun;30(3):229-37. </ref>,
lisääntyvätkö vakavammat hengityistieoireet, jotka johtaisivat sairaalahoitoon tai jopa kuolemiin. Suomesta näitä ei ole lainkaan.  


Liukastumisonnettomuuksien määrä ja niistä aiheutuvat kustannukset voivat hyvinkin kasvaa nollan asteen ympärillä vaihtelevien säiden lisääntyessä. Katujen oikea kunnossapito ja jalankulkijoiden tietoisuuden lisääminen oikeista jalkineista ja liukuesteistä ovat keinoja vähentää liukastumistapaturmia ja niistä aiheutuvia kustannuksia. Katujen oikea kunnossapito aiheuttaa luonnollisesti myös kustannuksia.
Allergeenialtistumisen tiedetään pahentavan oireita herkistyneillä ihmisillä, mutta siitepölyillä - tai allergeeneilla ylipäänsä - näyttää olevan varsin rajallinen rooli allergian ja astman synnyssä. Niinpä ei ole odotettavissa, että siitepölypitoisuuksien muutokset lisäisivät allergisia sairauksia sinänsä, vaikka oireilu allergikoilla voikin lisääntyä.
--
Suomessa on valtion menoista rahoitettava sairausvakuutusjärjestelmä, joka on osa sosiaaliturvaa. Lisäksi työssä käyvät henkilöt on vakuutettu sairastumisen varalta työnantajan toimesta. Myös yksityiset vakuutusyritykset tarjoavat sairauskuluvakuutuksia, joiden ehdot vaihtelevat vakuutusyhtiöittäin.


- vesi-epidemiat?
===Maastopalot===


Pienhiukkaset (PM<sub>2.5</sub>, aerodynaaminen halkaisija alle 2.5 mikrometriä) ovat nykyään tärkein ympäristöterveysongelma länsimaissa.
(Euroopan Unioni, 2005)<ref>European Union, Clean Air for Europe (CAFÉ) Programme, 2005. http://ec.europa.eu/environment/air/cafe/index.htm</ref>.
Lyhytaikainen altistus yhdistyy lisääntyneeseen hengitystie- ja sydänsairastuvuuteen ja -kuolleisuuteen.
(Halonen ym. 2008, Lanki ym. 2006a)<ref>Halonen JI, Lanki T, Yli-Tuomi T, Kulmala M, Tiittanen P, Pekkanen J. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax. 2008 Jul;63(7):635-41.</ref>
<ref>Lanki T, Pekkanen J, Aalto P, Elosua R, Berglind N, D'Ippoliti D, Kulmala M, Nyberg F, Peters A, Picciotto S, Salomaa V, Sunyer J, Tiittanen P, von Klot S, and Forastiere F. Associations of traffic-related air pollutants with hospitalisation for first acute myocardial infarction. The HEAPSS study.  Occup Environ Med 2006a; 63:844-851.</ref>
Siksi onkin yllättävää, että maastopalojen yhteydessä on totuttu ajattelemaan vain itse palon vaikutusta, vaikka palot voivat tuottaa savua viikkokausia ja pienhiukkaspitoisuudet nousta moninkertaisiksi korkeisiinkin taustapitoisuuksiin verrattuna jopa satojen kilometrien päässä päästölähteestä. Kaukokulkeutunut maastopalon savu aiheuttaa säännöllisesti pienhiukkasepisodeja myös Suomessa
(Niemi 2009)<ref>Niemi JV, Saarikoski S, Aurela M, Tervahattu H, Hillamo R, Westphal DL, Aarnio P, Koskentalo T, Makkonen U, Vehkamäki H, Kulmala M. Long-range transported episodes of fine particles in Southern Finland during 1999-2007. Atmospheric Environment 2009; 43:1255-1264.</ref>.
Tuoreen arvion mukaan jopa yksittäinen episodi voi aiheuttaa merkittävästi lisääntynyttä kuolleisuutta väestössä
(Hänninen ym., 2009)<ref>Hänninen O, Salonen RO, Koistinen K, Lanki T, Barregård L, Jantunen M. Population exposure to fine particles and estimated excess mortality in Finland from an East-European wildfire episode in 2002. J Expo Sci Environ Epidemiol 2009; 19:414-422.</ref>.
Ilmastonmuutoksen on ennustettu lisäävän ja pahentavan maastopaloja eri puolilla maailmaa (esim. Westerling ym., 2006)<ref>Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 2006; 313:940-943.</ref>.


Fossiilisten polttoaineiden pienhiukkasten vaarallisuus on osoitettu
(esim. Lanki ym., 2006b)<ref>Lanki T, de Hartog JJ,  Heinrich J, Hoek G, Janssen NAH, Peters A, Stölzel M, Timonen KL, Vallius M, Vanninen E, Pekkanen J. Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environ Health Perspect 2006b; 114:655-660.</ref>,
mutta maastopalojen tuottamia pienhiukkasia on tutkittu niukasti. Ne ovat kemialliselta koostumukseltaan erilaisia kuin esimerkiksi liikenteen pienhiukkaset ja voivat siten aiheuttaa erilaisia haittoja. Ei kuitenkaan ole syytä olettaa, että ne olisivat haitattomampia kuin muut pienhiukkaset. Erilaisten hiukkasten myrkyllisyyseroja tutkitaan Suomessa varsin aktiivisesti esimerkiksi BIOHER-projektissa (http://en.opasnet.org/w/Bioher), joten ymmärrys tästä aiheesta on vähitellen paranemassa. Tietoa maastopalojen haitoista voisi saada myös tutkimalla satelliittihavaintoja, pitkäaikaisia meteorologisia tietokantoja ja esimerkiksi IS4FIRES-projektin laskelmia (Sofiev et al, 2009b, Saarikoski et al, 2007).
<ref>Sofiev,M., Vankevich,R., Lotjonen,M., Prank,M., Petukhov,V., Ermakova,T., J.Koskinen, Kukkonen,J. (2009b). An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmos. Chem. Phys., 9, 6833-6847, http://www.atmos-chem-phys.net/9/6833/2009/acp-9-6833-2009.html.</ref>
<ref>Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., Hillamo, R. (2007) Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: experimental and modelling assessments. Atmosph. Environ., 41, 3577-3589.</ref>


Viitteet:
===Talous- ja uimavesien pilaantuminen===


Grimaldi, S., Partonen, T., Saarni, S. I., Aromaa, A. and Lönnqvist, J. Indoors illumination and seasonal changes in mood and behavior are associated with the health-related quality of life. Health Qual Life Outcomes 2008;6:56.
Rankkasateiden ja tulvien yleistyminen voi aiheuttaa talous- ja uimavesien saastumista; uutiskynnyksen ylittävien ongelmien lisäksi runsaat sateet voivat aiheuttaa paikallisia pienempiä terveysongelmia pintavesien päästessä saastuttamaan kaivoja. Lämmenneet järvi- ja merivedet voivat edistää syanobakteerien (eli niin kutsuttujen sinilevien) kasvua ja kukintaa. Osa syanobatkeereista erittää myrkkyjä, jotka voivat aiheuttaa iho-oireita uimareille mutta myös vakavampia hermosto- tai muita oireita, jos vettä käytetään talousvetenä. Vaikka isompia terveyshaittoja ei Suomessa ole todettu, uimavesien laatu on tärkeä hyvinvointikysymys. Tässä kappaleessa keskitymme kuitenkin mikrobikontaminaation aiheuttamiin talousvesivälitteisiin epidemioihin.


Grimaldi, S., Englund, A., Partonen, T., Haukka, J., Pirkola, S., Reunanen, A., Aromaa, A. and Lönnqvist, J. Experienced poor lighting contributes to the seasonal fluctuations in weight and appetite that relate to the metabolic syndrome. J Environ Public Health 2009;2009:165013.
Sateet ja lumien sulamisvedet ovat maailmanlaajuisesti elintärkeitä juomeveden lähteitä. Pohjoisessa ilmastossamme kuitenkin myös vesiepidemiat johtuvat tyypillisesti joko lumen sulamisvesistä tai syksyn rankkasateista
(Miettinen ym. 2001)<ref name="miettinen2001"> Miettinen et al. 2001. Waterborne epidemics in Finland in 1998‐1999. Water Sci Technol. 43:67‐71.</ref>. 
Nämä johtuvat maanalaisen, yleensä pienen juomevesilähteen saastumisesta mikrobipitoisilla pintavalumilla
(Hunter, 2003)<ref name="hunter2003"> Hunter, P.R. 2003. Climate change and waterborne and vector-borne disease. Journal of Applied Microbiology, 94: 37–46</ref>. 
Myös jätevesihaverien aiheuttamat juomavesilähteiden saastumiset ovat yleisiä.
Suurimman osan vesiepidemioista aiheuttavat norovirukset tai kampylobakteerit; Euroopassa myös alkueläimet giardia ja cryptosporidium ovat tärkeitä
(Miettinen ym., 2001, Hrudey ym., 2007, Pitkänen ym., 2008)<ref name="miettinen2001"> Miettinen et al. 2001. Waterborne epidemics in Finland in 1998‐1999. Water Sci Technol. 43:67‐71.</ref>
<ref>Hrudey SE, Hrudey EJ. 2007. Water Environment Research 79: 233-45</ref>
<ref>Pitkanen T, Miettinen IT, Nakari UM et al. 2008. Journal of Water and Health 6: 365-76</ref>.


Grimaldi, S., Partonen, T., Haukka, J., Aromaa, A. and Lönnqvist, J. Seasonal vegetative and affective symptoms in the Finnish general population: Testing the dual vulnerability and latitude effect hypotheses. Nord J Psychiatry 2009;63:397-404.
Kansallisen vesihuollon merkittävin uhka ja tarve järjestelmäkehitykseen koskee pohjavesilaitosten jakaman juomaveden turvallisuutta. Talousvedestä n. 60&nbsp;% osuus tuotetaan pohjavesilaitoksissa. Tavoitteena on pohjavedenkäytön lisääminen. Suomalaiset pohjavedet ovat hyvin haavoittuvia. Usein uskotaan että maaperä suojaa pohjavesiä ja ettei muuta suojaa tarvita. Todellisuudessa pohjavedenottamoiden sijainti mm. mäkien rinteissä ja hiekkamontuissa sekä yleensä ohut suojaava pintakerros altistaa ne likaantumiselle. Vuosien 1998-2008 aikana Suomessa on esiintynyt 59 vesiepidemiaa, joissa on sairastunut noin 27&nbsp;000 henkilöä (www.thl.fi). Vesiepidemioiden lisäksi erityisesti rankkasateet ovat aiheuttaneet joka vuosi lukuisia kontaminaatiotilanteita (20-40 kpl/vuosi).


Hassi, J. and Rytkönen, M. 2005. Climate warming and health adaptation in Finland. FINADAPT Working Paper 7, Finnish Environment Institute Mimeographs 337, Helsinki, 22 pp.
Juomaveden hyvään mikrobiologiseen laatuun tulisi pyrkiä raakaveden laadun huomioivalla riittävän tehokkaalla vedenkäsittelyllä. Käytännössä näin ei tapahdu. Pintavesilaitoksilla saostustekniikka, aktiivihiilisuodatus ja desinfiointi ovat vesiepidemioista saadun kokemuksen perusteella tehokkaita tapoja mikrobien poistamiseen. Pohjavesilaitoksilla veden pääasiallinen käsittely on maaperä itsessään, jonka toivotaan poistavan pintavesien kautta maaperään joutuvat epäpuhtaudet. Tämä ei välttämättä toteudu. Ilmastonmuutos tuo tulevaisuudessa merkittävän haasteen pohjavesien turvallisuudelle. Kesien keskilämpötilan ennustetaan kohoavan 4°C vuosisadan loppuun mennessä.


Hiltunen, L., Suominen, K., Lönnqvist, J. and Partonen, T. Relationship between daylength and suicide in Finland. J Circadian Rhythms 2011;9:10.
Riskinarvioinnin kannalta oleellista on äärimmäisten sääilmiöiden huomioon ottaminen. On todennäköistä, että rankkasateiden määrä tulee lisääntymään ilmaston muutoksen takia (ACCLIM II, 2011)<ref>ACCLIM II-hankkeen lyhyt loppuraportti http://ilmatieteenlaitos.fi/c/document_library/get_file?uuid=f72ce783-0bae-4468-b67e-8e280bec1452&groupId=30106</ref>.


Näyhä, S. Environmental temperature and mortality. Int J Circumpolar Health 2005;64(5):451-458
Euroopan kattavana tarpeena on kehittää järjestelmiä sellaisten herkkien pohjavesikohteiden vedenlaadunhallintaan, joiden haavoittuvuus paikallisille sään ääreisilmiöille on merkittävä ja joiden harjurakenne on yksilöllinen. Erityisesti pienet vedenottamot ovat vaarassa, koska niitä ylläpidetään vähäisillä resursseilla. Todellisen pohjaveden lisäksi rantaimeytyskohteissa pintavedenlaadun vaihtelut heijastuvat vesilaitoksella pahimmillaan prosessien toistuvina poikkeustilanteina. Monet suuret vesilaitokset käyttävät pintavettä toisena raakavesilähteenään, jolloin vaatimukset prosessien säädölle ja reagointiherkkyydelle kasvavat entisestään.  


Ruuhela, R., Hiltunen, L., Venäläinen, A., Pirinen, P. and Partonen T. Climate impact on suicide rates in Finland from 1971 to 2003. Int J Biometeorol 2009;53:167-175.
Ilmastonmuutos myös aiheuttaa paineita järjestelmällisten riskinarviointien ja riskinhallintatoimien tekemiseen. Erityisesti sään ääri-ilmiöiden aiheuttamia mikrobiriskejä pitäisi arvioida ja niihin varautua mm. vesiturvallisuussuunnitelmin. Myös vedenlaadun jatkuva seuranta korostuu, jotta vakavat ongelmat tunnistetaan, ennen kuin ne ehtivät aiheuttaa terveyshaittaa. Jatkossa vedenottamoinvestointeihin tulisikin liittää automaatiojärjestelmän ulottaminen pohjavesikohteisiin ja niiden ympäristöön.  


==Tiivistelmä suomeksi==
===Tapaturmat===


IPCC:n mukaan ilmastonmuutos lisää tulevaisuudessa tautitaakkaa maapallon joka puolella. Se on myös suosittanut sopeutumiskyvyn lisäämistä joka puolella maailmaa. Kuitenkin ilmastonmuutoksen sopeutumispolitiikkoja tutkitaan liian vähän monien vaikutusten ja haittojen suhteen.
Talven keskilämpötilan noustessa nollan asteen ympärillä vaihtelevat säät voivat lisääntyä ja tällaisen sään raja siirtyä pohjoisemmaksi. Tällä hetkellä sairaalahoitoa (vähintään yksi vuorokausi) vaativien lumesta tai jäästä johtuvien liukastumisonnettomuuksien määrän arvioidaan olevan vuosittain noin 5000, joista aiheutuu lähes 30 000 sairaalahoitopäivää. Arviot sairaanhoitoa vaativien liukastumisonnettomuuksien kokonaismäärästä vuosittain vaihtelevat suuresti, 40 000 – 100 000 välillä
(WHO 2011)<ref>WHO 2011: European Hospital Morbidity Database (HMDB). http://data.euro.who.int/hmdb/index.php</ref>
Talvikaudella 2003–2004 noin 68 prosenttia Töölön tapaturma-asemalla raportoiduista liukastumistapaturmista aiheutui työssä käyville ihmisille (20–59 vuotiaat), joten kustannukset yhteiskunnalle mahdollisista sairauspoissaoloista voivat olla merkittäviä. Lonkkamurtumia tapaturmista oli noin kuusi prosenttia. Rahalliset kustannukset liukkaiden kelien liukastumistapaturmista voivat siis hyvinkin olla kymmeniä miljoonia euroja.


Käynnissä oleva Akatemian rahoittama projekti CLAIH tuottaa tietoa ihmisen toiminnan aiheuttamista pienhiukkasista ja niiden vaikutuksista useille tulevaisuuden ilmastoskenaarioille. Haettavana oleva projekti HICCUPS rakentaa tuon työn päälle ja tuottaa innovatiivista tutkimusta terveysvaikutuksista useiden sellaisten ympäristöaltisteiden osalta, joiden arvellaan lisääntyvän ilmastonmuutoksen takia. Tätä tietoa käytetään tutkimukseen sopeutumispolitiikoista. Kööpenhaminan ilmastokokous osoitti, että on vielä suuria puutteita tieteellisen tiedon hyödyntämisessä yhteiskunnan päätöksenteossa. Siksi HICCUPS-tutkimusryhmä tuottaa uutta tieteellistä tietoa, joka on yhteiskunnan päätöksenteon kannalta tärkeää. Tieto tuotetaan viitekehyksessä, joka edistää sen tehokasta hyödyntämistä päätöksenteossa.
Liukastumisonnettomuuksien määrä ja niistä aiheutuvat kustannukset voivat hyvinkin kasvaa nollan asteen ympärillä vaihtelevien säiden lisääntyessä. Katujen oikea kunnossapito ja jalankulkijoiden tietoisuuden lisääminen oikeista jalkineista ja liukuesteistä ovat keinoja vähentää liukastumistapaturmia ja niistä aiheutuvia kustannuksia. Katujen oikea kunnossapito aiheuttaa luonnollisesti myös kustannuksia.  


Projektin pääkysymys on tämä: "Mitkä ovat tulevaisuudessa ilmastonmuutoksesta aiheutuvat terveyshaitat Suomessa?" Projekti tuottaa yleiskatsauksen mahdollisiin terveysvaikutuksiin. Lisäksi se katsoo erityisesti kolmea tärkeää aihetta: i) muutoksia siitepölypitoisuuksissa ja niistä aiheutuvissa allergiasairauksissa, ii) muutoksia maastopaloissa syntyvien ilmansaasteiden pitoisuuksissa ja niistä aiheutuvissa terveyshaitoissa, ja iii) muutoksia herkkyydessä kokea terveyshaittoja äärilämpötiloille altistumisen seurauksena Suomessa.
Liukastumisten lisäksi ilmastonmuutokseen liittyviä tapaturmia sattuu myrskyjen yhteydessä. Sään ääri-ilmiöiden odotetaan lisääntyvän, mikä tarkoittaa myös lisääntyviä tai pahentuvia myrskyjä. Puiden kaatuminen ihmisten tai talojen päälle tai autotielle on Suomessa tyypillinen tapaturmariskiä lisäävä tekijä. Näin kävi esimerkiksi elokuussa 2010, kun trombi iski leirintäalueelle ja kolme loukkaantui. <ref>Helsingin Sanomat 4.8.2010: Kolme loukkaantui myrskyssä Uuraisten leirintäalueella. http://www.hs.fi/kotimaa/artikkeli/1135259082473</ref>


Tähän liittyvä toinen kysymys on tämä: "Mitkä ovat mahdollisia politiikkatoimia, joilla sopeudutaan kysymyksessä 1 tunnistettuihin muutoksiin, ja mitkä ovat näiden politiikkatoimien terveys- ja yhteiskunnalliset hyödyt?" Projekti tuottaa uutta tietoa päätöksenteossa käytettäväksi. Se tuottaa myös uusia keinoja tuottaa, keskustella ja parantaa tätä tietoa hyödyntäen uusia verkkotyötiloja, erityisesti Opasnetiä ja suomalaista ilmastonmuutosportaalia CCCRP:tä.
===Vektorivälitteiset taudit===


== Background==
Ilmastonmuutos voi vaikuttaa myös vektorivälitteisten ja muuttolintujen levittämien sairauksien määrään ja leviämiseen. Sairauksien levinnäisyydelle on kuitenkin useita muitakin tekijöitä, ja tarkat syyt tunnetaan huonosti. Esimerkiksi puutiaisaivokuume on Euroopassa yleistynyt, mutta muutokset eivät näytä selittyvän pelkästään ilmastonmuutoksella (IPCC, 2007b)<ref>IPCC, 2007b: Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability. Chapter 8: Human health. http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch8.html</ref>.


The Intergovernmental Panel on Climate Change (IPCC) has stated with very high confidence that climate change currently contributes to the global burden of disease and premature deaths, and that projected climate change-related exposures are likely to affect the health status of millions of people, particularly those with low adaptive capacity (Confalonieri et al. 2007). It has also recommended that adaptive capacity be improved around the world.  Various scientific journal articles have called for increased research and action regarding the health impacts of climate change.  Recent and ongoing projects in Europe have examined the health co-benefits of greenhouse gas mitigation policies (e.g., Rypdal et al., 2007), but fewer have examined adaptation policies to climate change for a wide range of stressors and effects. However, initial attempts exist: the national adaptation strategy (MMM, 2005) and a scoping study (Hassi and Rytkönen, 2005). Both of these recommended intensified research to examine health effects in Finland. There have been few other studies despite the high quality of health and environmental data in Finland. Also, the Finnish Minister of Health and Social Services, Paula Risikko has highlighted the need for debate on climate change and its health impacts (STM, 2008).
Suomessa tyypillisiä vektorivälitteisiä tauteja ovat borrelioosi, puutiaisaivokuume, myyräkuume ja pogostantauti. Muualla maailmassa voimakkaasti sääriippuvaisen malarian leviäminen mahdollisesti uusille alueille on merkittävä uhka. Vaikka Suomeen ei leviäisikään uusia vektorivälitteisiä sairauksia, matkailun seurauksena myös suomalaiset voivat altistua niille.  


A major part of the societal effects of climate change will be due to the direct and indirect effects of climate on human health. Adaptation measures taken to alleviate the anticipated health effects will further alter the structures of the society in many ways. The most important health effects of climate change can be divided into five categories: impacts due to 1) temperature, 2) extreme weather events (storms, floods etc.), 3) air pollution, 4) pollen, and 5) infectious diseases. An ongoing project funded by the Academy of Finland, 'Climate change, air quality and housing - future challenges to public health (CLAIH)' is addressing the health effects of air pollution for selected future climate change scenarios. Most of the participants of CLAIH are also included in the consortium of the present proposal. In addition, a second Academy project involving two partners, 'Map-based assessment of vulnerability to climate change employing regional indicators (MAVERIC)', includes a regional case study to map the adaptive capacity of the elderly to cope with extreme weather events, which will complement new work in this project on heatwave risk. To assist the consortium, three of the Lead Authors of the IPCC Fourth Assessment health chapter (Confalonieri et al. 2007) have agreed to serve as international expert advisers on this project.
Vektoritautien leviämisessä on syytä muistaa, että ratkaisevaa taudin yleisyydessä ei ole ainoastaan vektorin mahdollisen elinpiirin laajentuminen pohjoiseen, vaan siihen vaikuttavat monet maantieteeseen, käyttäytymiseen ja terveydenhuoltoon liittyvät seikat. Lämpenemisestä huolimatta vektorieläimelle otolliset kosteikot tai heinikot voivat muista syistä vähentyä. Myös ihmisten ajankäyttö erilaisissa ympäristöissä sekä suojaava vaatetus ovat vahvasti kulttuurisidonnaisia ja voivat muuttua ilmastosta riippumatta. Ja kolmanneksi, terveydenhuollon toimivuus ja varautuminen sekä nopea diagnostiikka ja hoito voivat tehokkaasti ehkäistä vektorien leviämisen aiheuttamaa tautipainetta, kunhan asia tiedostetaan ja sen vaatimiin toimiin ryhdytään.


Societal effects of climate-related changes in pollen patterns, wild-fires, and extreme temperatures are among those for which more information is needed both worldwide and especially in Finland.  Symptoms of respiratory allergies and use of medication can be expected to increase with higher levels of pollen. However, there is very sparse data (Schmier and Ebi 2009) as to whether increased pollen levels would lead to more severe respiratory outcomes and thus increased visits to emergency departments, hospitals or even deaths. Adaptation to new conditions, especially for potentially spreading invasive species, may require new political, legislative and practical measures.
===Kaamosoireet===


Particulate air pollution poses currently the main environmental health problem in the Western world (European Commission 2005). Short-term changes in fine particle (PM2.5; aerodymic diameter<2.5 µm) concentrations have been associated with both respiratory and cardiovascular mortality and morbidity (Halonen et al. 2008, Lanki et al. 2006a). Thus it is surprising that concerning wild-land fires, traditionally only the effects of heat on human health have been considered. Yet smoke episodes caused by wild-land fires can last for weeks or even months, and during the episodes ambient particle concentrations are typically raised several times higher than during any other time of the year, even hundreds of kilometers away from the source area. Long-range transported wild-fire smoke regularly leads to severe particulate air pollution episodes also in Finland (Niemi et al. 2009). It has recently been estimated that even a single episode could have substantial mortality effects in the population (Hänninen et al. 2009). Climate change has been predicted to lead to more common and severe wild-land fires in many parts of the world (e.g. Westerling et al. 2006).
'''Kaamosoireet ovat yhtä yleisiä koko maassa


Previous Finnish studies on the health effects of high and low ambient temperatures have assumed a stationary climate. There is inadequate information on the future health impact of extreme temperatures under different climate change scenarios. Specifically, there is a lack of information on individual factors (such as chronic diseases and socioeconomic status) affecting susceptibility, and on the capacity of the society to adapt to temperature changes.  
Päivän valoisa aika on talvella lyhyt koko maamme alueella. Suomessa 85 aikuista sadasta huomaa vuodenaikojen vaihtumisen vaikuttavan käyttäytymiseensä. Kaamosoireista tai talvisin masennusoireista kärsivien henkilöiden lukumäärä on asukasmäärään suhteutettuna yhtä suuri eri puolilla Suomea. Ongelma on siten yhtä suuri, asuttiinpa sitten missä päin Suomea tahansa. 40 henkilöä sadasta kokee vuosi toisensa jälkeen hyvinvointia heikentäviä oireita kuten unihäiriöitä tai ruokahalun ja painon vaihteluita. Myös muutokset sosiaalisuudessa, mielialassa ja toimintatarmossa ovat yleisiä. Joka kymmenes suomalainen kärsii näiden kaamosoireiden lisäksi myös masennusoireista talven aikana. Talvi toisensa jälkeen toistuvaan kaamosmasennukseen sairastuu yhdeksän suomalaista tuhannesta.


While there is a need for more scientific information on climate change effects, there is an even larger gap between scientific information and its utilisation in societal decision-making. The HICCUPS project proposes to do innovative research on health effects research on a set of environmental hazards that is anticipated to grow with climate change, coupled with adaptation related policy research. In addition, we propose to provide this societally relevant information in a framework that improves its incorporation into policy-making.
'''Kaamosoireet altistavat myös fyysisille sairauksille


== Research methods  ==
Sisätilavalaistus vaikuttaa siihen, missä määrin ruokahalu ja paino pyrkivät vaihtelemaan vuoden aikana. Etenkin lihominen toistuvasti aina talven aikana voi muutamassa vuodessa johtaa huomattavaan ylipainoon. Kaamosoireilu kasvattaakin niin kutsutun metabolisen oireyhtymän riskiä. Tämän takia keskivartalon liikakiloja, heikentynyttä sokerinsietoa ja korkeaa verenpainetta vastaan on mahdollista taistella paitsi kuntoa kohentavan liikunnan keinoin, myös kaamosoireita lievittävän valon avulla. Sisätilojen valaistusolosuhteilla on siten merkitystä myös ylipainon ja siitä johtuvien haitallisten terveysvaikutusten ehkäisylle.


Kun luonnon antamat aikamerkit joko puuttuvat, kuten pimeinä talviaamuina, tai kun elimistö lukee niitä epätäsmällisesti, kuten masentuneilla, sisäisen kellon toiminta kärsii rytmihäiriöistä. Valo on myös nopea ja tehokas keino kaamosoireita aiheuttavien sisäisen kellon rytmihäiriöiden estämiseen. Tästä huolimatta sisätilojen valaistus suunnitellaan niin uudisrakentamisen kuin korjausrakentamisen aikana edelleen vain näkemisen tarpeisiin. Näiden tarpeiden ohella valon terveysvaikutusten, jotka välittyvät silmien verkkokalvolta aivoille näköaistihavainnoista riippumatta, ymmärtäminen avartaisi valaistussuunnittelua ja antaisi keinon vaikuttaa laajamittaisesti terveyteen ja hyvinvointiin ihmisten arkiympäristössä.


Changing climate will invoke modifications in vegetation and, in particular, in its susceptibility to fires and pollination (e.g. a review book ed. by Ebi et al, 2009). In turn, this will cause changes in air quality related deceases including pollen allergy. The impact of climate to these processes, however, is not unequivocal due to large number of factors. Some of them are of geological and geographical origin (such as the soil types, solar local constants, etc) and thus do not change, while others (first of all, temperature, cloudiness and precipitation) do. As a result, in many cases even the direction of the changes in the vegetation due to the climate forcing may be uncertain and taxon-dependent (e.g., Damialis et al, 2007, Ranta et al, 2008). There are also indications that pollen originating from urban or otherwise stressed areas can be more allergenically potent than the one from rural and undisturbed side (Buters, unpublished).
'''Itsemurhat kertyvät kevääseen


Impacts of meteorological and climatologic parameters on pollen and wild-fire smoke will be modelled using Air Quality and Emergency Modelling System SILAM (Sofiev et al, 2006, 2008, 2009a) with the corresponding emission sub-models, such as the stand-alone Fire Assimilation System FAS (Sofiev et al, 2009b) for fires or embedded in SILAM pollen source module. SILAM is the only Europe-wide model possessing the pollen emission module based on actual meteorology. Both SILAM and FAS will be reviewed and parameterisations will be extended wherever needed to ensure the explicit treatment of the main climate-dependent processes. Statistical analysis, such as regression using Generalized Additive Models (GAMs), will be then applied to quantify the relations.  
Itsemurhayritykset ovat Suomessa tavallisimpia keväällä ja itsemurhat alkukesästä. Sekä miehillä että naisilla itsemurhien vuodenaikaisvaihtelu korostuu sitä enemmän, mitä pienempi itsemurhien vuosittainen määrä on. Kun itsemurhia tehdään vähemmän, vuodenaikojen merkitys ja niihin liittyvien biologisten taustatekijöiden vaikutus tulee selvemmin esille. Eräs tällainen altistava tekijä saattaa talvikuukausina olla niukka valo, sillä mitä vähemmän ulkona on auringon globaalisäteilyä, sitä runsaammin itsemurhakuolemia talvikuukausina on.


Established epidemiological approaches such as time-series analyses (Lanki et al. 2006a) and case-crossover design (von Klot et al. 2005) will be employed to evaluate associations of pollen levels, particles from wild-fires, and extreme temperatures with daily mortality and morbidity. Information on health outcomes and demographic variables will be collected from high quality national registries. We will estimate coefficients for the causal associations between climate-related variables and health which can then be used to estimate future health effects related to climate change.  
Sitä vastoin keväisin ilmenevän itsemurhakuolleisuuden huipun tarkemmat syyt ovat edelleen tuntemattomia. Altistava tekijä kevätkuukausina saattaa vuorostaan olla valon runsaus, etenkin uni-valverytmin häiriöille altistava illasta pitenevä valoisa aika. Serotoniinin käyttö hermosolujen kemialliseen viestinsiirtoon on laiskinta talven aikana, mutta vilkastuu nopeasti auringonpaisteen voimistuessa keväällä, mikä voi johtaa mielialan heilahduksiin ja aistiharhoihin. Epäsuotuisissa olosuhteissa ilmaantuessaan ne suurentavat itsemurhariskiä.


The project utilises the strongly multi-disciplinary experience of the group and involves a wide range of tools developed in atmospheric physics and chemistry, meteorology and climatology, aerobiology, botany and biogeography, mathematical modelling and data analysis, epidemiology and public health, decision analysis, open assessment, and social sciences.
===Talousvaikutukset tunnetaan huonosti===


We will perform an integrated assessment by systematically applying '''open assessment'''. The assessment is a chain of model results and descriptions that contains climate change scenarios and emission, dispersion, exposure, and health effect estimates, conditional on policies assessed. Open assessment is a novel method directed at improving the effectiveness of impact assessments and developed at THL (Tuomisto and Pohjola, 2007). '''Opasnet''', maintained by THL, is a web workspace that supports the functionalities needed by open assessments (http://en.opasnet.org).  
Ilmastonmuutoksen ja ilmastonmuutokseen sopeutumisen terveyteen liittyvät taloudelliset vaikutukset Suomessa tunnetaan huonosti. Aihetta on tutkittu myös maailmanlaajuisesti hyvin vähän. Joitain arvioita ilmastonmuutoksen vaikutuksista globaalilla tasolla on, mutta ne perustuvat pieneen määrään aineistoa, rajallisiin terveysvaikutuksiin ja Suomen kannalta epärelevantteihin vaikutuksiin, kuten muutoksiin malariaa kantavien hyttysten esiintymisessä. Muuttuva ilmasto kuitenkin aiheuttaa terveyteen liittyviä taloudellisia vaikutuksia myös Suomessa. Kovien pakkasten ja helleaaltojen aiheuttamien kuolemantapausten määrien muuttuminen voi aiheuttaa taloudellisia vaikutuksia. Helleaallot voivat aiheuttaa myös työtehokkuuden vähenemistä. Näiden vaikutusten vähentäminen voi olla kustannustehokas sopeutumiskeino. Lumipeitteen vähenemisen vuoksi talvet voivat pimentyä tämänhetkisestä, mikä vaikuttaa kaamosmasennukseen ja sitä kautta ihmisten työkykyyn. Tällä voi olla merkittäviäkin
kansantaloudellisia vaikutuksia. Tämänhetkisenkin tilanteen taloudellisten vaikutusten selvittäminen hyödyttäisi arvioiden tekemistä tulevasta tilanteesta.  


===Health effects of climate change in Finland  ===
==Perustelut==


We will make a thorough scientific review and overview of the most important effects associated with climate change and its mitigation and adaptation strategies in Finland. Health projections will be based on Finnish health data, existing literature and on-going work by the applicants and other researchers. Effects related to pollen, wild fires, and ambient temperature will be taken from the work packages of the present proposal. Health effects related to outdoor and indoor air pollution and energy production policies and traffic (Markandya et al. 2009, Smith et al. 2009, Wilkinson et al. 2009), e.g. biomass, fine particles, wood combustion, ozone, moisture damage are covered by the CLAIH project.
=== Data ===


We will estimate indirect effects of climate policies on public health, like reducing consumption of animal products and associated reduction in cardiovascular diseases (Friel et al. 2009), or reducing car traffic and associated increase in physical activity (Woodcock et al. 2009). We will also estimate semi-quantitatively the effects of climate change on infectious diseases, especially zoonoses, through changed distribution of disease vectors. We will evaluate problems with temperature and food hygiene and effects of increased rain fall and flooding on water born epidemics. We will explore other suggested health effects of climate change, including mental health. We will also discuss the needs of the wider society to adapt to the changing climate.  
Etsi seuraavat raportit, linkkaa tähän ja listaa raporteissa mainitut keskeiset terveysvaikutukset. Useimmat raportit käsittelevät asiaa laajemmin kuin Suomen kannalta, mutta aluksi tietoa haetaan laajalti, ja sen soveltuvuus Suomeen mietitään myöhemmin.
 
* Tim Carter ym 2003 (SYKE)
===Pollen and allergies  ===
* Mäkelä 2005
 
* IPCC-ilmastoraportti, uusin versio
The most-important species for Finland will be considered: birch and grass, plus ragweed (Ambrosia), as an example of invasive taxon of major allergic concerns in Central Europe and confirmed to have settled in Southern Sweden.
* Environmental Health Perspectives -lehti on julkaissut tästä aiheesta artikkeleita (ei tosin Suomea koskevia tiettävästi)
 
* http://www.ilmasto-opas.fi
'''Task 2.1. Climate impact on pollen features and abundance. (FMI, UT)''' Within this bio-meteorological task, we will estimate the climate-driven trends of pollen features and abundance in air by relating the long-term data on pollen concentrations and phenological phases to the climatic parameters, such as seasonal temperature and precipitation. Three types of forcing will be quantified: (i) short-term impact of current weather to pollen release and presence in air (e.g. Sofiev et al, 2006), (ii) mid-term impact of seasonal meteorological conditions to flowering season (Siljamo et al, 2009b), and (iii) long-term impact of previous-year conditions to the amount of pollen (Ranta et al, 2009). The parameterizations of the pollen sub-module of SILAM model (Sofiev et al, 2006, 2008) will be reviewed in order to verify and, wherever necessary, include the explicit treatment of climate-relevant parameters. The model, with the updated pollen emission sub-system, will be evaluated against Northern-Europe aerobiological observations over the climatologically relevant period (at least a decade).
* http://www.ilmastotieto.fi
Ambrosia emission module will be created and evaluated in collaboration with the south-European countries and European Aeroallergen Network (EAN). The primary goal of the module will be to evaluate a principal possibility of this invasive species to settle and start pollinating in Finland
* http://www.aka.fi/ficca
 
* [http://www.mmm.fi/fi/index/etusivu/ymparisto/ilmastopolitiikka/sopeutumistutkimusohjelma.html Ilmastonmuutoksen sopeutumisohjelma ISTO]
'''Task 2.2. Short- and long- term pollen exposure and health in Finland. (THL, UT)''' There are few studies relating daily pollen levels to cardiorespiratory morbidity and mortality, and practically none from Finland. We will therefore analyse short-term health effects of pollen on cardiorespiratory mortality and morbidity based on the association of daily levels of pollen with visits to emergency departments for COPD or asthma and cardiovascular events in the Helsinki Metropolitan area in 1998-2007 (following Halonen et al. 2008). Allergen exposure is known to exacerbate symptoms among sensitized individuals, but the role of pollen, or allergens in general, in the initiation of allergy and asthma has been challanged in recent years. We will therefore critically analyze the effects of increased pollen levels on initiation of allergy. We will explore the association between birch pollen exposure during pregnancy and first year of life and development of the immune system, sensitization, respiratory symptoms and asthma using our extensive birth cohort (Karvonen et al. 2009).  
* http://ilmatieteenlaitos.fi/acclim-ilmastoseminaari-2011
 
* [https://helda.helsinki.fi/handle/10138/15711 ACCLIM-raportti]
'''Task 2.3. Future-climate projections, (FMI, THL)''' The future-climate scenarios will be used to evaluate a typical pattern of pollen production, release, and transport over Northern Europe. The updated SILAM model will be applied over a period of a few years generated by climate models. The resulting features of the pollen season for the considered taxa will be compared with the present-time estimates. A set of sensitivity studies will be performed to highlight the mechanisms and parameters responsible for the changes. As a result, the presence, daily amounts and features of the allergenic pollen, as well as a potential Ambrosia spread will be evaluated for an average year with future-climate conditions and compared with the present-time exposure values, as well as their uncertainties. The health impacts of the changes in pollen induced by climate change are then estimated using the exposure-response functions established in task 2.2., including a detailed examination of the uncertainties, including possible changes in the allergenicity of pollen.
* Mikko Paunio: Varautuminen ilmastonmuutokseen Suomessa
 
* Muita lähteitä, mm. http://www.pubmed.gov
===Wild-land fires  ===
 
'''Task 3.1.''' The harmfulness of particles from fossil fuel combustion has been established (e.g. Lanki et al 2006b), but there are scarcely studies on the health effects of particles from wild-fires or any other forms of biomass combustion. Thus, source-specific dose-response functions have to be estimated before current and future risks of wild-fire smoke can be calculated. Associations between PM2.5 from wild-fires and cardiorespiratory hospitalizations and mortality in the Helsinki Metropolitan Area during years 2001-2006 will be evaluated using both episode analysis and linear regression, and case-crossover methodology (von Klot et al. 2005). Control periods will be selected using time-stratified approach. Models will be adjusted for locally generated particles, temperature, influenza, pollen, and other potential confounders. Contributions of wild-fires to PM2.5 will be evaluated in Task 3.2. In addition, existing data on particle mass and composition will be used (Niemi et al. 2009). Health data will be requested from national hospital admission and mortality registries.  
 
'''Task 3.2.''' We will model emissions and concentrations of PM2.5 from wild-fires in Europe for the years 2000-2010 by using long-term satellite observations, in situ-data, and long-term European meteorological databases. The modelling tools will be SILAM and the FMI Fire Assimilation System (FAS) developed within the on-going project Academy IS4FIRES project (Sofiev et al, 2009b, Saarikoski et al, 2007). The relation between the short- and long-term meteorological situation and the incidence of substantial wild-land fires, i.e. the fire risk, will be assessed. Predictive capability of the constructed index will be compared to the existing wild-fire indices.
 
'''Task 3.3.''' We will use models developed in Task 3.2. to estimate concentrations of PM2.5 from wild-fires in Finland in the future climate. The impact of wild-fire smoke on both mortality and cardiorespiratory hospital admissions in Finland in the future will be evaluated by linking the modelled PM2.5 concentrations with spatial data on the predicted future Finnish population (population density, age and sex distribution etc.). Published dose-response functions of urban PM2.5 in different population sub-groups will form the basis for the risk assessment, but the functions will be modified based on the results from Task 3.1 to take into account potential differences in toxicity between urban PM2.5 and PM2.5 from wild-fires.
 
===Vulnerability of the elderly to extreme temperatures===
 
Background: High and low temperatures are well known to be natural environmental and occupational hazards (e.g. Kovats and Hajat, 2008). The potential impact of extreme temperatures is related to an individual's exposure and their sensitivity to its effects (intrinsic risk, which is affected by factors such as age and physical condition). There is a limited number of studies looking at the factors affecting individual sensitivity (Stafoggia et al. 2006). There have been isolated previous studies of temperature-related mortality that compared conditions in northern and southern Finland (e.g. Näyhä, 2005)  and between Finland and locations in other countries (e.g. Keatinge et al., 2000; Donaldson et al., 2003; Baccini et al., 2008). These indicated that, on average, under present-day conditions mortality in Finland attributable to low temperatures is an order of magnitude greater than that attributable to high temperatures. This situation could change with a warming climate in the future, but no systematic study has yet been carried out either of the potential impacts across different regions of Finland or of the implications of future climate and socio-economic and demographic changes for the population at risk. The importance of such studies was emphasised by the high rates of mortality during the severe 2003 heatwave in central Europe, especially among the elderly. An increasing frequency and intensity of heatwave events is one of the more certain future manifestations of anthropogenic climate change (IPCC, 2007).
 
 
== References  ==
 
Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., Anderson, H.R., Bisanti, L., D’Ippoliti, D., Danova, J., Forsberg, B., Medina, S., Paldy, A., Rabczenko, D., Schindler, C. and Michelozzi, P. 2008. Heat Effects on Mortality in 15 European Cities. Epidemiology 19(5): 711-719.
 
Confalonieri, U., B. Menne, R. Akhtar, K.L. Ebi, M. Hauengue, R.S. Kovats, B. Revich and A. Woodward, 2007: Human health. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 391-431.
 
Damialis, A., Halley, J.M., Gioulekas, D., Vokou, D. (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmosph.Environ., 41, 7011-7021.
 
Donaldson, G.C., Keatinge, W.R.and Nayha, S. 2003. Changes in summer temperature and heat-related mortality since 1971 in North Carolina, South Finland, and Southeast England.
Environ. Res. 91:1–7.


Ebi, K.L., Burton, I., McGregor, G. (editors) (2009) Biometeorology for adaptation to climate variability and change. Springer, ISBN 978-1-4020-8920-6, 280pp.


EEA, 2002: The ShAIR scenario. Towards air and climate change outlooks, integrated assessment methodologies and tools applied to air pollution and greenhouse gases. Topic Report 12/2001, European Environment Agency, Copenhagen, Denmark, 116 pp.
EEA, 2002: The ShAIR scenario. Towards air and climate change outlooks, integrated assessment methodologies and tools applied to air pollution and greenhouse gases. Topic Report 12/2001, European Environment Agency, Copenhagen, Denmark, 116 pp.
European Union, Clean Air for Europe (CAFÉ) Programme, 2005. http://ec.europa.eu/environment/air/cafe/index.htm


Friel S, Dangour AD, Garnett T, Lock K, Chalabi Z, Roberts I, Butler A, Butler CD, Waage J, McMichael AJ, Haines A. Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture. Lancet. 2009 Dec 12;374(9706):2016-25. Epub . PubMed PMID: 19942280.  
Friel S, Dangour AD, Garnett T, Lock K, Chalabi Z, Roberts I, Butler A, Butler CD, Waage J, McMichael AJ, Haines A. Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture. Lancet. 2009 Dec 12;374(9706):2016-25. Epub . PubMed PMID: 19942280.  


Hakkarainen, K.: A knowledge practice perspective on technology-mediated learning. Computer-Supported Collaborative Learning (2009) 4:213-231.
Hakkarainen, K.: A knowledge practice perspective on technology-mediated learning. Computer-Supported Collaborative Learning (2009) 4:213-231.
Halonen JI, Lanki T, Yli-Tuomi T, Kulmala M, Tiittanen P, Pekkanen J. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax. 2008 Jul;63(7):635-41


Hassi, J. and Rytkönen, M. 2005. Climate warming and health adaptation in Finland. FINADAPT Working Paper 7, Finnish Environment Institute Mimeographs 337, Helsinki, 22 pp. http://www.environment.fi/default.asp?contentid=165158&amp;lan=en
Hassi, J. and Rytkönen, M. 2005. Climate warming and health adaptation in Finland. FINADAPT Working Paper 7, Finnish Environment Institute Mimeographs 337, Helsinki, 22 pp. http://www.environment.fi/default.asp?contentid=165158&amp;lan=en
Hänninen O, Salonen RO, Koistinen K, Lanki T, Barregård L, Jantunen M. Population exposure to fine particles and estimated excess mortality in Finland from an East-European wildfire episode in 2002. J Expo Sci Environ Epidemiol 2009; 19:414-422.
IPCC, 2007: Summary for policymakers. In: ''Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ''\[Solomon, S. et al. (eds.)\]. Cambridge University Press, 1-18.
Karvonen AM, Hyvärinen A, Roponen M, Hoffmann M, Korppi M, Remes S, von Mutius E, Nevalainen A, Pekkanen J. Confirmed moisture damage at home, respiratory symptoms and atopy in early life: a birth-cohort study. Pediatrics. 2009 Aug;124(2):e329-38.
Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, Mackenbach JP, Nayha S, Vuori . 2000. Heat-related mortality in warm and cold regions of Europe: observational study. ''BMJ ''321: 670-673.


Kettunen J, Lanki T, Tiittanen P, Aalto P, Koskentalo T, Kulmala M, Salomaa V, Pekkanen J. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke 2007; 38:918-922.
Kettunen J, Lanki T, Tiittanen P, Aalto P, Koskentalo T, Kulmala M, Salomaa V, Pekkanen J. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke 2007; 38:918-922.
Kovats, R.S. and Hajat, S. 2008. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 29: 9.1–9.15.
Lanki T, Pekkanen J, Aalto P, Elosua R, Berglind N, D'Ippoliti D, Kulmala M, Nyberg F, Peters A, Picciotto S, Salomaa V, Sunyer J, Tiittanen P, von Klot S, and Forastiere F. Associations of traffic-related air pollutants with hospitalisation for first acute myocardial infarction. The HEAPSS study.  Occup Environ Med 2006a; 63:844-851.
Lanki T, de Hartog JJ,  Heinrich J, Hoek G, Janssen NAH, Peters A, Stölzel M, Timonen KL, Vallius M, Vanninen E, Pekkanen J. Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environ Health Perspect 2006b; 114:655-660.
Markandya A, Armstrong BG, Hales S, Chiabai A, Criqui P, Mima S, Tonne C, Wilkinson P. Public health benefits of strategies to reduce greenhouse-gas emissions: low-carbon electricity generation. Lancet. 2009 Dec 12;374(9706):2006-15. Epub . PubMed PMID: 19942282.
MMM, 2005. Finland’s National Strategy for Adaptation to Climate Change [Marttila, V. et al. (eds)], Ministry of Agriculture and Forestry, Helsinki, Accessed (5.1.2010): http://www.mmm.fi/fi/index/etusivu/ymparisto/ilmastopolitiikka/ilmastomuutos.html
Morgan MG and Henrion M: Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge University Press, 1990.
Niemi JV, Saarikoski S, Aurela M, Tervahattu H, Hillamo R, Westphal DL, Aarnio P, Koskentalo T, Makkonen U, Vehkamäki H, Kulmala M. Long-range transported episodes of fine particles in Southern Finland during 1999-2007. Atmospheric Environment 2009; 43:1255-1264.


Nisbet, Matthew C. and Mooney, Chris: Framing Science. Science (2007): 316: 56. Doi: 10.1126/science.1142030
Nisbet, Matthew C. and Mooney, Chris: Framing Science. Science (2007): 316: 56. Doi: 10.1126/science.1142030
Rivi 249: Rivi 264:


Pohjola MV, Pohjola P, Paavola S, Tuomisto JT: Knowledge services in support of converging knowledge, innovation, and practice. 2010 (Submitted).
Pohjola MV, Pohjola P, Paavola S, Tuomisto JT: Knowledge services in support of converging knowledge, innovation, and practice. 2010 (Submitted).
Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., Oksanen, A. (2008) Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecol and Management, 255, 643-650.


Rypdal, Kristin, Nathan Rive, Stefan Åström, Niko Karvosenoja, Kristin Aunan, Jesper L. Bak, Kaarle Kupiainen and Jaakko Kukkonen, 2007. Nordic air quality co-benefits from European post-2012 climate policies. Energy Policy 35 (2007) 6309–6322. www.elsevier.com/locate/enpol  
Rypdal, Kristin, Nathan Rive, Stefan Åström, Niko Karvosenoja, Kristin Aunan, Jesper L. Bak, Kaarle Kupiainen and Jaakko Kukkonen, 2007. Nordic air quality co-benefits from European post-2012 climate policies. Energy Policy 35 (2007) 6309–6322. www.elsevier.com/locate/enpol  


Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., Hillamo, R. (2007) Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: experimental and modelling assessments. Atmosph. Environ., 41, 3577-3589.<br>
Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J., Polevova, S., Kubin, E. Minin, A. (2008b) Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia. DOI 10.1007/s10453-008-9100-8.
 
Schmier JK, Ebi KL. The impact of climate change and aeroallergens on children's health. Allergy Asthma Proc. 2009 May-Jun;30(3):229-37.
 
Siljamo,P., Sofiev,M., Ranta,H., Linkosalo,T., Kubin,E., Ahas,R., Genikhovich, E., Jatczak, K, Jato,V.,Nekovar,J., Minin,A., Severova,E., Shalaboda,V. (2008a) Representativeness of point-wise phenological Betula data observed in different parts of Europe. Global Ecology and Biogeography, 17(4), 489-502, DOI: 10.1111/j.1466-8238.2008.00383.x. <br>
 
Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J., Polevova, S., Kubin, E. Minin, A. (2008b) Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia. DOI 10.1007/s10453-008-9100-8. <br>


Sivenius J, Torppa J, Tuomilehto J, Immonen-Räihä P, Kaarisalo M, Sarti C, Kuulasmaa K, Mähönen M, Lehtonen A, Salomaa V. Modelling the burden of stroke in Finland until 2030. Int J Stroke 2009; 4:340-345.
Sivenius J, Torppa J, Tuomilehto J, Immonen-Räihä P, Kaarisalo M, Sarti C, Kuulasmaa K, Mähönen M, Lehtonen A, Salomaa V. Modelling the burden of stroke in Finland until 2030. Int J Stroke 2009; 4:340-345.
Rivi 271: Rivi 278:


Sofiev, M., Siljamo, P., Ranta, H., Rantio-Lehtimäki, A. (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J. on Biometeorology, DOI 10 1007/s00484-006-0027-x, 50, 392-402.16. Siljamo,P., Sofiev,M., Ranta,H., Linkosalo,T., Kubin,E., Ahas,R., Genikhovich, E., Jatczak, K, Jato,V.,Nekovar,J., Minin,A., Severova,E., Shalaboda,V. (2008) Representativeness of point-wise phenological Betula data observed in different parts of Europe. Global Ecology and Biogeography, 17(4), 489-502, DOI: 10.1111/j.1466-8238.2008.00383.x.<br>  
Sofiev, M., Siljamo, P., Ranta, H., Rantio-Lehtimäki, A. (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J. on Biometeorology, DOI 10 1007/s00484-006-0027-x, 50, 392-402.16. Siljamo,P., Sofiev,M., Ranta,H., Linkosalo,T., Kubin,E., Ahas,R., Genikhovich, E., Jatczak, K, Jato,V.,Nekovar,J., Minin,A., Severova,E., Shalaboda,V. (2008) Representativeness of point-wise phenological Betula data observed in different parts of Europe. Global Ecology and Biogeography, 17(4), 489-502, DOI: 10.1111/j.1466-8238.2008.00383.x.<br>  
Sofiev,M., Vankevich,R., Lotjonen,M., Prank,M., Petukhov,V., Ermakova,T., J.Koskinen, Kukkonen,J. (2009b). An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmos. Chem. Phys., 9, 6833-6847, http://www.atmos-chem-phys.net/9/6833/2009/acp-9-6833-2009.html.<br>
Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, Cadum E, Caranci N, de’Donato F, De Lisio S, De Moreno M, Michelozzi P, Miglio R, Pandolfi P, Picciotto S, Rognoni M, Russo A, Scarnato C, Perucci CA. Vulnerability to heat-related mortality. A multi-city, population based. case-crossover analysis. Epidemiology 2006; 17:315.323.


STM, 2008. Minister Risikko: Not enough debate in Finland about how climate change affects health, Press release, Finnish Ministry of Social Affairs and Health, 24 June 2008. Accessed (5.1.2010): http://www.stm.fi/en/pressreleases/pressrelease/view/1238807  
STM, 2008. Minister Risikko: Not enough debate in Finland about how climate change affects health, Press release, Finnish Ministry of Social Affairs and Health, 24 June 2008. Accessed (5.1.2010): http://www.stm.fi/en/pressreleases/pressrelease/view/1238807  
Rivi 285: Rivi 288:


von Klot S, Peters A, Aalto P, Bellander T, Berglind N, D’Ippoliti D, Elosua R, Hörmann A, Kulmala M, Lanki T, Löwel H, Pekkanen J, Picciotto S, Sunyer J, Forastiere F for the HEAPSS Study Group. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in European cities. Circulation 2005; 112:3073-3079.2009;64(5):678-701  
von Klot S, Peters A, Aalto P, Bellander T, Berglind N, D’Ippoliti D, Elosua R, Hörmann A, Kulmala M, Lanki T, Löwel H, Pekkanen J, Picciotto S, Sunyer J, Forastiere F for the HEAPSS Study Group. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in European cities. Circulation 2005; 112:3073-3079.2009;64(5):678-701  
Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 2006; 313:940-943.


WHO-the joint task force on health aspects of air pollution of The World Health Organization/European Centre for Environment and Health, and the executive body for the convention on long-range transboundary air pollution. Health risks of air pollution from biomass combustion. 12th meeting report, Bonn, Germany, 25.-26.5.2009. http://www.unece.org/env/documents/2009/EB/wge/ece.eb.air.wg.1.2009.12.e.pdf
WHO-the joint task force on health aspects of air pollution of The World Health Organization/European Centre for Environment and Health, and the executive body for the convention on long-range transboundary air pollution. Health risks of air pollution from biomass combustion. 12th meeting report, Bonn, Germany, 25.-26.5.2009. http://www.unece.org/env/documents/2009/EB/wge/ece.eb.air.wg.1.2009.12.e.pdf
Wilkinson P, Smith KR, Davies M, Adair H, Armstrong BG, Barrett M, Bruce N, Haines A, Hamilton I, Oreszczyn T, Ridley I, Tonne C, Chalabi Z. Public health benefits of strategies to reduce greenhouse-gas emissions: household energy. Lancet. 2009 Dec 5;374(9705):1917-29. Epub 2009 Nov 26. PubMed PMID: 19942273.


Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, Beevers S, Chalabi Z, Chowdhury Z, Cohen A, Franco OH, Haines A, Hickman R, Lindsay G, Mittal I, Mohan D, Tiwari G, Woodward A, Roberts I. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 2009 Dec 5;374(9705):1930-43. Epub 2009 Nov 26. PubMed PMID: 19942277.
Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, Beevers S, Chalabi Z, Chowdhury Z, Cohen A, Franco OH, Haines A, Hickman R, Lindsay G, Mittal I, Mohan D, Tiwari G, Woodward A, Roberts I. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 2009 Dec 5;374(9705):1930-43. Epub 2009 Nov 26. PubMed PMID: 19942277.


Yokota F. and Thompson K.M. (2004). Value of information literature analysis: A review of applications in health risk management. Medical Decision Making, 24 (3), pp. 287-298.
== Määritelmä ==
=== Data ===
Etsi seuraavat raportit, linkkaa tähän ja listaa raporteissa mainitut keskeiset terveysvaikutukset. Useimmat raportit käsittelevät asiaa laajemmin kuin Suomen kannalta, mutta aluksi tietoa haetaan laajalti, ja sen soveltuvuus Suomeen mietitään myöhemmin.
* Tim Carter ym 2003 (SYKE)
* Mäkelä 2005
* IPCC-ilmastoraportti, uusin versio
* Environmental Health Perspectives -lehti on julkaissut tästä aiheesta artikkeleita (ei tosin Suomea koskevia tiettävästi)
* http://www.ilmasto-opas.fi
* http://www.aka.fi/ficca
* [http://www.mmm.fi/fi/index/etusivu/ymparisto/ilmastopolitiikka/sopeutumistutkimusohjelma.html Ilmastonmuutoksen sopeutumisohjelma ISTO]
* http://ilmatieteenlaitos.fi/acclim-ilmastoseminaari-2011
* [https://helda.helsinki.fi/handle/10138/15711 ACCLIM-raportti]
* Mikko Paunio: Varautuminen ilmastonmuutokseen Suomessa
* Muita lähteitä, mm. http://www.pubmed.gov


== Katso myös ==
== Katso myös ==
Rivi 319: Rivi 299:
* [[Ilmastonmuutokseen sopeutuminen pääkaupunkiseudulla]]
* [[Ilmastonmuutokseen sopeutuminen pääkaupunkiseudulla]]
* [[:heande:Climate and health]]
* [[:heande:Climate and health]]
* Aiempi versio, jossa on 18.11.2011 poistettua keskustelua sisällöstä [http://fi.opasnet.org/fi_wiki/index.php?title=Ilmastonmuutoksen_terveysvaikutukset_Suomessa&oldid=10175]
* [http://ilmasto-opas.fi/fi/ilmastonmuutos/sopeutuminen/-/artikkeli/43b2ca2e-f1b1-4378-aafd-e58bc1c75a2d/ISTO.html#cli_links Ilmasto-opas: ISTO]
[http://www.mmm.fi/en/index/frontpage/adaption/isto/isto_projects/public_decision_making.html ISTO: Kustannus-hyötyanalyysi osana ilmastopäätöksentekoa]
* [http://www.mmm.fi/en/index/frontpage/adaption/isto/isto_projects/climate.html ISTO: Ilmastonmuutos ja kaupunkisuunnittelu]
* [http://www.finessi.info/ FINESSI Ilmastotyökalu]
* [http://www.mmm.fi/en/index/frontpage/adaption/isto/isto_projects/acclim.html ISTO: ACCLIM: Ilmaston ääritapahtumat] [https://helda.helsinki.fi/bitstream/handle/10138/15711/2009nro4.pdf?sequence=1 raportti]
* [http://ilmastoinfo.fi/ Ilmastoinfo]


==Avainsanat==
==Avainsanat==


Ilmastonmuutos, sopeutuminen, terveys, terveysvaikutus, helle, ääri-ilmiö, lämpötila, vektoritaudit
Ilmastonmuutos, sopeutuminen, terveys, terveysvaikutus, helle, ääri-ilmiö, lämpötila, vektoritauti, tapaturma, vesiepidemia, maastopalo, siitepöly


== Viitteet ==
===Viitteet===


<references/>
<references/>
Grimaldi, S., Partonen, T., Saarni, S. I., Aromaa, A. and Lönnqvist, J. Indoors illumination and seasonal changes in mood and behavior are associated with the health-related quality of life. Health Qual Life Outcomes 2008;6:56.
Grimaldi, S., Englund, A., Partonen, T., Haukka, J., Pirkola, S., Reunanen, A., Aromaa, A. and Lönnqvist, J. Experienced poor lighting contributes to the seasonal fluctuations in weight and appetite that relate to the metabolic syndrome. J Environ Public Health 2009;2009:165013.
Grimaldi, S., Partonen, T., Haukka, J., Aromaa, A. and Lönnqvist, J. Seasonal vegetative and affective symptoms in the Finnish general population: Testing the dual vulnerability and latitude effect hypotheses. Nord J Psychiatry 2009;63:397-404.
Hiltunen, L., Suominen, K., Lönnqvist, J. and Partonen, T. Relationship between daylength and suicide in Finland. J Circadian Rhythms 2011;9:10.
Ruuhela, R., Hiltunen, L., Venäläinen, A., Pirinen, P. and Partonen T. Climate impact on suicide rates in Finland from 1971 to 2003. Int J Biometeorol 2009;53:167-175.


==Aiheeseen liittyviä tiedostoja==
==Aiheeseen liittyviä tiedostoja==


{{mfiles}}
{{mfiles}}

Nykyinen versio 18. kesäkuuta 2012 kello 10.47




Kysymys

Mitkä ovat ilmastonmuutoksen, siihen sopeutumisen ja sen torjunnan terveysvaikutukset Suomessa?

Lisäkysymys: Mitä tutkimusta on tästä aiheesta meneillään ja mitä pitäisi tutkia?

Vastaus

2.4. Terveys

Hallitustenvälinen ilmastopaneeli (IPCC) ja WHO ovat todenneet, että ilmastonmuutos vaikuttaa maailman tautikuormaan jo nyt ja että ilmastoon liittyvä altistuminen vaikuttaa miljoonien ihmisten terveyteen tulevaisuudessa. Erityisesti tämä koskee niitä ihmisiä, joiden sopeutumiskyky on alentunut (Confalonieri ym, 2007)[1]. IPCC on myös suosittanut sopeutumiskyvyn lisäämistä joka puolella maailmaa. Kuitenkin ilmastonmuutoksen sopeutumispolitiikkoja tutkitaan liian vähän monien terveysvaikutusten ja haittojen suhteen.

Ilmastonmuutoksella sekä ilmastonmuutoksen torjuntaan ja sopeutumiseen suunnatuilla toimilla on erittäin moninaiset ja potentiaaliset merkittävät vaikutukset suomalaisten terveyteen ja hyvinvointiin. Mm. kaikki tässä raportissa käsitellyt tekijät heijastuvat tavalla tai toisella terveyteen ja hyvinvointiin. Toisaalta suomalaisten terveys ja hyvinvointi ovat merkittävä motivaatio ja liikkeelle paneva voima sopeuduttaessa ilmastonmuutokseen ja torjuttaessa sitä.

Ilmastonmuutoksen sopeutumis- ja torjuntatoimien suuntaamiseksi on oleellista edes karkealla tasolla pyrkiä määrällisesti arvioimaan eri toimenpiteiden hyötyjä ja haittoja. Tässä priorisoinnissa ihmisen terveys on eri sektorit ylittävä arviointikriteeri, aivan samalla tavalla kuin rahalliset kustannukset. Valitettavasti ilmastonmuutoksen, sen torjunnan ja siihen sopeutumisen terveysvaikutuksia on Suomessa selvitetty erittäin vähän.

Suurimmat ilmastonmuutoksen aiheuttamat terveys- ja muut haitat kohtaavat juuri köyhiä eteläisiä maita, joilla on huonoin kyky vastata näihin haasteisiin. On siis odotettavissa, että jossain päin maailmaa nähdään isojakin yhteiskunnallisia järistyksiä, joiden välilliset vaikutukset tuntuvat kaukana maapallon eri kolkilla. Suomessa merkittävimmät ilmastonmuutoksen liittyvät terveysvaikutukset ovatkin todennäköisesti epäsuoria, kansainväliseen taloudelliseen tilanteeseen tai pakolaisuuteen liittyviä. Ilmastopakolaisten määrää tai vaikutuksia maailmankauppaan on vaikea arvioida, mutta on mahdollista että ne ovat hyvin suuria.

Vaikka tietopuutteita on, näyttää toisaalta selvältä, että yleinen pyrkimys järjestelmien hyvään sopeutumiskykyyn ja sitkeyteen (engl. resilience) on joka tapauksessa eduksi. Voimme erehtyä siinä, johtuvatko suurimmat ilmastonmuutoksen terveyshaitat vesiepidemioista, hellejaksoista tai ehkä maastopaloista, mutta suomalaisen yhteiskunnan kannattaa edistää ihmisten valveutuneisuutta ja kykyä suojautua näiltä haitoilta ja toisaalta edistää terveydenhuollon kapasiteettia vastata suuriin, äkillisiin tai muuttuviin terveyshaittoihin.

Tarkasteltaessa ilmastonmuutoksen terveysvaikutuksia on tärkeä tarkastella samanaikaisesti myös ilmastonmuutoksen sopeutumisen ja sen torjunnan terveysvaikutuksia. Oleellista olisi pyrkiä identifioimaan n.s. win-win politiikoita, jotka sekä torjuvat ilmastonmuutosta että muutenkin edistävät kansanterveyttä ja toisaalta välttää politiikoita, jotka torjuvat ilmastonmuutosta kansanterveyden kustannuksella. Näyttääkin siltä, että huomattava osa järkevän ilmastonmuutospolitiikan kustannuksista voidaan saada takaisin parantuneena kansanterveytenä (IPCC 2007b)[2].

Monet nyky-yhteiskunnan valtatrendeistä sekä edistävät ilmastonmuutosta että huonontavat kansanterveyttä. Hyvä esimerkki on runsas yksityisautoilu lyhyillä matkoilla. Siirtyminen enemmän kävelemiseen tai pyöräilyyn merkittävästi torjuisi ilmastonmuutosta ja vähentäisi muitakin pakokaasupäästöjä, mutta suurin kansanterveyshyöty tulisi lisääntyneestä liikunnasta ja alentuneesta sydän- ja verisuonitautiriskistä.

Välittömistä terveysvaikutuksista merkittävimmiksi uhkaavat nousta huonosti suunnitellut ilmastonmuutoksen torjuntatoimet. Varoittava esimerkki on voimakkaasti lisääntynyt puun pienpolton asuntojen lämmityksessä. Erityisesti koska pienpolttolaitteiden tehokkuutta ei lainkaan säädellä, tämä lisää voimakkaasti pienhiukkaspäästöjä ja siten sydän- ja verisuonitautiriskejä. Jos sen sijaan puu poltettaisiin kokonaan ja puhtaasti voimalaitoksissa, joissa on tehokas päästöjen puhdistus, päästöt voitaisiin pitää kurissa (Pekkanen, 2010)[3].

Merkittävä osa ilmastonmuutoksen yhteiskunnallisista vaikutuksista on suoria tai välillisiä vaikutuksia terveyteen ja hyvinvointiin. Tärkeimpiä ilmastonmuutoksen aiheuttamia, terveyteen vaikuttavia tekijöitä ovat 1) äärilämpötilat (toisaalta helteiden lisääntyminen, toisaalta kylmien jaksojen vähentyminen), 2) siitepölyjen lisääntyminen, 3) ilmansaasteet erityisesti lisääntyvien maastopalojen takia, 4) talousveden mikrobikontaminaatioiden yleistyminen mm. rankkasateiden takia, 5) syanobakteerien (sinileväkukintojen) lisääntyminen uimavesissä (tämä aihe käsitellään talousveden yhteydessä), 6) äärimmäiset sääilmiöt ja liukkaus (myrskyt, tulvat, nollakeli), 7) vektorivälitteisten ja muiden infektioita aiheuttavien mikrobien yleistyminen. 8) kaamoksen syveneminen lumipeitteen vähentyessä ja pilvisyyden lisääntyessä,

Erityisesti Suomessa mutta myös maailmanlaajuisesti tarvitaan lisätietoa terveysvaikutuksista useiden sellaisten ympäristöaltisteiden osalta, joiden arvellaan lisääntyvän ilmastonmuutoksen takia. Tätä tietoa tarvitaan ohjaamaan sopeutumistoimenpiteitä ja -politiikkoja. Kööpenhaminan ilmastokokous vuonna 2009 osoitti, että yhteiskunta osaa hyödyntää ilmastonmuutokseen liittyvää tieteellistä tietoa vain puutteellisesti. Ilmastonmuutoksen osalta pitäisikin siis lisätä sekä tietoa vaikutuksista ja tarvittavista toimenpiteistä että kykyä toimia tieteellisen tiedon ja siitä nousevien päätelmien mukaisesti.

Terveys ja hyvinvointi on lopulta monen eri tekijän lopputulos, ja siihen vaikuttavat myös muutokset yhteiskunnissa. Sopeutuminen uusiin oloihin vaatii poliittisia, lainsäädännöllisiä ja päivittäisiin toimintatapoihin liittyviä toimia. Ilmastonmuutoksen akuutteihin terveysvaikutuksiin voidaan myös varautua kehittämällä varoitusjärjestelmiä ja terveydenhuollon toimia tietyissä säätilanteissa.

Tässä luvussa esitellään lyhyesti näitä terveyteen vaikuttavia tekijöitä. Samat tiedot on esitetty myös THL:n ylläpitämässä verkkotyötila Opasnetissä (http://fi.opasnet.org/fi/Ilmastonmuutoksen_terveysvaikutukset_Suomessa), jonne tietoa päivitetään ja jossa asioista voi käydä avointa ja kriittistä keskustelua.


Ilmaston terveyshaittojen tutkimus on lisääntymässä

Tuoreet hankkeet Euroopassa ovat tutkineet ilmastonmuutoksen hillintätoimien terveyshyötyjä (esim. Rypdal ym., 2007) [4], mutta harvemmat ovat tutkineet sopeutumistoimien terveysvaikutuksia useiden tekijöiden ja vaikutusten suhteen. Kuitenkin kansallinen sopeutumisstrategia (MMM, 2005)[5] ja siihen liittyvä tutkimus (Hassi ja Rytkönen, 2005)[6] molemmat suosittelevat ilmastonmuutoksen terveysvaikutustutkimuksen lisäämistä Suomessa. Laadukkaista ympäristö- ja terveysaineistoista huolimatta tutkimusta ei ole Suomessa juuri tehty. Kansainvälisesti on tutkittu mm. ulko- ja sisäilmaan ja energiantuotantoon ja liikenteeseen liittyviä terveysvaikutuksia ilmastonmuutoksen näkökulmasta (Markandya et al. 2009, Smith et al. 2009, Wilkinson et al. 2009) [7] [8] [9].

Käynnissä oleva Akatemian rahoittama projekti CLAIH (http://en.opasnet.org/w/Claih) tuottaa tietoa ihmisen toiminnan aiheuttamista pienhiukkasista ja niiden vaikutuksista useissa tulevaisuuden ilmastoskenaarioissa. Tutkimus tarkastelee biomassan energiakäyttöä ja erityisesti puun pienpolttoa, energiansäästötoimia, pienhiukkasia, otsonia, kasvihuonekaasuja ja rakennusten kosteusvaurioita. Lisäksi toinen akatemiaprojekti MAVERIC (http://www.ymparisto.fi/default.asp?contentid=318210&lan=en&clan=en) tarkastelee alueellisten tapaustutkimusten avulla vanhusten sopeutumiskykyä äärilämpötiloihin. ISTO-tutkimushankkeen ACCLIM-projekti (http://ilmatieteenlaitos.fi/acclim-hanke) tutkii nykyilmaston ääri-ilmöiden vaihtelua ja arvioi keskeisten säätekijöiden muutoksia tuleville vuosikymmenille. Näitä tietoja voidaan hyödyntää suuntaa-antavasti myös hellevaikutusten ja muiden terveysvaikutusten arvioinneissa.

Helteet ja kylmyys

Lämpötilan ääripäät lisäävät rasitusta

Sään ja ilmaston terveysvaikutuksista parhaiten tunnetaan kuolleisuuden lämpötilariippuvuus, joka on U-muotoinen siten, että lämpötilan molemmat ääripäät – helleaallot ja kylmyys – lisäävät kuolleisuutta pääasiassa sydän- ja hengitystiesairauksien seurauksena (mm. Kovats ja Hajat, 2008) [10]. Kylmällä säällä verisuonet supistuvat, mikä nostaa verenpainetta. Kuumalla säällä sydämen työmäärä kasvaa lisääntyneen pintaverenkierron ylläpitämiseksi: pitkäkestoissa kuumassa sydän kuormittuu, koska palautuminen on riittämätöntä. Äärikuumassa myös veren viskositeetti voi kohota ja lisätä siten riskiä verenkierron häiriöihin. Kuolleisuudessa on nähtävissä myös selkeä vuodenaikaisvaihtelu, sillä kuolleisuus on keskimäärin korkeampi talvella kuin kesällä. Kuolleisuuden kasvua talvisin selitetään myös hengitystieinfektioilla ja sydämen lisärasituksella, joka johtuu kohonneesta verenpaineesta ja lisääntyneestä fyysisestä kuormituksesta. Suomen nykyisessä ilmastossa helteen arvioidaan aiheuttavan keskimäärin 100–200 ylimääräistä kuolemantapausta ja kylmyyden 2000–3000 (Näyhä, 2005)[11].

Suomessa kuolleisuus on pienimmillään vuorokauden keskilämpötilan ollessa n. 14 astetta. Ilmastonmuutoksen seurauksena helleaaltojen aiheuttamien kuolemantapausten voidaan odottaa lisääntyvän tulevaisuudessa, vaikka ihmiset sopeutuvatkin jossain määrin muuttuvaan ilmastoon. Toisaalta ilmastonmuutoksen myönteisenä seurauksena kylmän sään aiheuttamien terveysongelmien odotetaan jonkin verran vähenevän. (Hassi ja Rytkönen, 2005)[6].

Ihmiset myös sopeutuvat omaan ilmastoonsa, mikä näkyy siten, että lämpimään ilmastoon tottuneet ovat herkempiä kylmyydelle kuin suomalaiset ja toisaalta helteen vaikutus kuolleisuuteen alkaa näkyä Suomessa alemmilla lämpötiloilla kuin lämpimämmissä ilmastoissa. Äärilämpötilojen potentiaalinen vaikutus riippuu yksilön altistuksesta ja yksilöllisestä herkkyydestä, johon puolestaan vaikuttavat mm. ikä ja terveydentila (Stafoggia ym., 2006)[12]. Yksilöllisestä herkkyydestä on vain vähän tukimuksia.

On joitakin sellaisia tutkimuksia lämpötilan yhteydestä kuolleisuuteen, joissa on verrattu tilannetta Etelä- ja Pohjois-Suomessa (esim. Näyhä, 2005)[11] tai Suomessa ja jossakin toisessa maassa (esim. Keatinge et al., 2000; Donaldson et al., 2003; Baccini et al., 2008) [13] [14] [15] . Näiden tutkimusten mukaan nyky-Suomessa matalien lämpötilojen aiheuttama kuolleisuus on kertaluokkaa suurempi kuin korkeiden lämpötilojen. Ilmaston lämpeneminen voi siis olla terveydelle eduksi, mutta vielä ei ole järjestelmällisiä tutkimuksia, jotka huomioisivat sosioekonomiset, demografiset ja alueelliset muutokset Suomessa. Tällaisen tiedon tärkeys korostuu Euroopan 2003 helleaallon valossa, jossa nähtiin jopa kymmeniätuhansia ylimääräisiä kuolemia. Lisääntyvät ja voimistuvat helleaallot ovat yksi ilmastonmuutoksen varmoja merkkejä (IPCC, 2007a, b) [16] [17].

Heinäkuun 2010 helleaallon voidaan karkeasti arvioida lisänneen kuolleiden määrää Suomessa noin 400:lla (Kuva xx). Helleaalto oli poikkeuksellinen monella tavoin. Sen aikana mitattiin uusi lämpöennätys ja uusia heinäkuun kuukausikeskilämpötilaennätyksiä. Mutta terveysvaikutusten kannalta oleellisempaa oli hellejakson pituus; laajoilla alueilla lämpötila kohosi useana päivänä peräkkäin jopa yli 30 asteen. Todennäköisyyslaskelmien mukaan nykyisessä, jo muuttuneessa ilmastossa kesän 2010 kaltainen hellekesä koettaisiin vain kerran elämässä. Ilmastonmuutoksen edetessä todennäköisyys kasvaa ja tällainen kesä koettaisiin vuosisadan puolivälin arvioidussa, muuttuneessa ilmastossa jopa kerran 10–15 vuodessa (Räisänen, 2010)[18].


Kuva xx. Kuolleet kuukausittain touko-syyskuussa 2003–2010. Lähde: Tilastokeskus


Lämpötasapaino on monen tekijän summa

Ihmisen lämpötasapainoon vaikuttaa kolme päätekijää: ympäristön lämpöolot, elimistön lämmöntuotanto (perusaineenvaihdunta ja lihastyö) ja vaatetuksen lämmöneristävyys. Vaatetuksen ja lihastyön määrää vaihtelemalla pystytään toimimaan laajasti vaihtelevissa olosuhteissa. Kuuma kuormittaa ennen kaikkea sydäntä ja saattaa vaikeuttaa nestetasapainon ylläpitoa. Kylmässä alkaa toimintakykyä rajoittaa ensin raajojen kärkiosien jäähtyminen ja raskaassa työssä ylähengitysteiden supistuminen. Kylmä nostaa myös verenpainetta. Pitkäkestoisen kylmätyön uskotaan aiheuttavan tai pahentavan tuki- ja liikuntaelimistön oireita. Vaikka tästä on paljon havaintoja, on kylmän ja oireiden yhteyttä vaikea osoittaa oireiden pitkän kehittymisajan vuoksi.

Työelämässä kylmätyön rajana pidetään 10 °C lämpötilaa, jossa ääreisosat alkavat jäähtyä kevyessä työssä. Kylmän haittoja torjutaan asianmukaisella kylmänsuojavaatetuksella ja lämmittelytauoilla. Kuumatyön rajana pidetään 28 °C lämpötilaa. Sen yläpuolella täytyy pitää useampia ja pitkäkestoisempia taukoja. Kylmässä kevyt työ on riskialtista, koska lämmöntuotanto on vähäistä. Kuumassa puolestaan raskas työ on erityisen riskialtista sen aiheuttaman lämmöntuotannon vuoksi. Raskas työ voi kohottaa lämmöntuotantoa jopa yli 10-kertaiseksi perusaineenvaihduntaa verrattuna. Raskaat ja/tai vesihöyryä läpäisemättömät suojavarusteet lisäävät kuumakuormituksen riskiä jopa kylmässä. Erityisen sääherkkiä ovat ikääntyneet, pienet lapset, kroonisesti sairaat sekä lämmönsietoa heikentäviä lääkkeitä käyttävät.

Ilmastonmuutoksen aiheuttaman hitaan keskilämpötilan muutoksen ei oleteta vaikuttavan suomalaisten terveyteen tai toimintakykyyn. Sen sijaan äärimmäiset ja/tai pitkät kylmä- ja kuumajaksot voivat olla terveysriski. Tavallista selvempiä vaikutuksia nähdään myös, kun vuodenajat vaihtuvat ja ensimmäinen kylmä- tai kuumajakso alkaa. Tähän on syynä fysiologisen sopeutumisen puuttuminen: sopeutuminen vie aikaa noin kaksi viikkoa. Kylmän ja kuuman suoranaisten vaikutusten lisäksi lämpöolot voivat vaikuttaa olemassa olevien sairauksien hoitotasapainoon.


Lämpöolot ovat hyvinvoinnin yksi perusta

Sekä kylmä että kuuma vaikuttavat terveyteen erityisesti riskiryhmillä. Lämpöolojen vaikutukset hyvinvointiin ja toiminta/työkykyyn koskevat huomattavasti laajempia väestöryhmiä ja myös terveitä henkilöitä. Yksilölliset erot lämpötasapainon hallinnassa ovat suuria ja esim. tarkimminkin säädetyssä sisäilmastossa enintään 85 % tutkittavista kokee olonsa lämpöviihtyisäksi. Kun mennään kohti ääriolosuhteita, hyvinvointi, toimintakyky ja tuottavuus laskevat. Koetun työhyvinvoinnin ja työn tuottavuuden heikkenemisellä on havaittu yhteyksiä työympäristön lämpöoloihin myös muissa kuin fyysisissä töissä. Suomessa osataan lämmittää, mutta työtilojen viilentämiseen järkevästi ja taloudellisesti kannattavasti ei ole varauduttu.

Ilmastonmuutoksen vaikutuksista tarvitaan lisää tietoa töissä, joissa kuuma- tai kylmästressi ovat mahdollisia. Tällaisia ovat useimmat fyysisesti raskaat ulkotyöt, kuljetusala, pelastus- ja huoltotyöt, joita täytyy tehdä myös äärioloissa. Tietoa tarvitaan lämpöolojen vaikutuksesta toimintakykyyn, kuormittumiseen ja palautumiseen sekä tarvittavista suojaustoimenpiteistä. Saatavilla oleva tutkimustieto keskittyy pääosin miehiin. Kuitenkin paljon naisia työskentelee aloilla, joissa lämpökuormitus on mahdollista, esim. palvelu-, hoiva-, turva- ja siivousaloilla. Lisää tutkimustietoa tarvitaan myös ilmansaasteiden ja lämpöolojen yhteisvaikutuksista.

Sopeutuminen

Iso osa hellekuolemista tapahtuu sairaaloissa, vanhainkodeissa, palvelutaloissa ja muissa julkisesti ylläpidetyissä kohteissa. Tämä johtuu yksinkertaisesti jo siitä, että helteelle herkät vanhukset ja sydänsairaat usein ovat tällaisissa laitoksissa. Tämä kuitenkin korostaa sitä, että laitoksissa tulisi kiinnittää erityistä huomiota lämpökuorman ehkäisyyn ja hoitamiseen. Rakennustekniikalla voidaan estää sisälämpötiloja nousemasta liian suuriksi, tärkeimpiin huoneisiin voidaan lisätä koneellista ilmastointia, ja henkilökunta voi valistaa ja huolehtia, että asiakkaat muistavat juoda riittävästi nestetyksen varmistamiseksi.

Ilmatieteen laitos on aloittanut kesällä 2011 hellevaroituspalvelun. Kolmiportaiset varoituskriteerit perustuvat helteen terveysvaikutuksiin ja ilmastotilastoihin. Koska kylmään säähän liittyvät kielteiset terveysvaikutukset alkavat jo Suomen ilmaston kannalta tavanomaisissa lämpöoloissa, pakkasvaroitusten kriteerit perustuvat ilmastotilastoihin. Pakkasvaroituksissa otetaan huomioon lämpötilan lisäksi tuulen vaikutus.

Hellevaroitukset ja niihin liittyvä muu tiedottaminen lisäävät kansalaisten tietoisuutta helteen kielteisistä terveysvaikutuksista, mutta sen lisäksi tulevaisuudessa on tarpeen parantaa terveydenhuolloin toimintaa helleaaltojen ja pitkien kovien pakkasjaksojen aikaan.

Lisätietoa helteiden ja muiden akuuttien kuolleisuutta lisäävien tekijöiden kuten influenssaepidemioiden merkityksestä on luvassa EUROMOMO-projektista. Usean Euroopan maan yhteishanke kehittää reaaliaikaisia monitorointimenetelmiä kuolleisuuden seuraamiseen ja tutkimiseen. Tavoitteena on tuottaa tietoa myös riskinhallintaa parantamaan (www.euromomo.eu)[19].

Siitepölyt ja allergiat

Ilmastonmuutos vaikuttaa kasvilajistoon ja siitepölyn määrään (Ebi ym., 2009)[20] ja sitä kautta siitepölyallergioihin. Tarkkaa vaikutusta ei kuitenkaan tunneta lukuisten asiaan vaikuttavien tekijöiden takia. Osa niistä on geologisia tai maantieteellisiä (maaperä, auringon säteilymäärät) ja siten ilmastonmuutoksesta riippumattomia, mutta osa on muuttuvia (lämpötila, pilvisyys, sademäärä, kasvukauden pituus). Siksi muutoksen suuntakin on epävarma ja voi vaihdella kasvilajeittain (esim. Damialis ym., 2007, Ranta ym., 2008) [21] [22].

Tärkeimmät siitepölykasvit Suomessa ovat koivu, heinät, leppä ja pujo, ja tulevaisuudessa mahdollisesti pujon sukulaiskasvit tuoksukit. Nämä sitkeät kasvit ovat peräisin Etelä-Euroopasta, mutta niitä on jo todettu Etelä-Ruotsissa. On mahdollista, että tuoksukit leviävät myös Suomeen.

Ilmaston muuttuminen voi aiheuttaa kolmenlaisia muutoksia: 1) lyhytaikaisia vaikutuksia siitepölyn päästöihin ja leviämiseen (mm. Sofiev ym., 2006)[23], 2) kasvukauden aikaisia muutoksia meteorologiassa, jotka vaikuttavat kukintaan (Siljamo ym. 2008)[24] 3) pitkäaikaisia muutoksia kasvien levinneisyydessä tai kukinnassa (Ranta ym. 2008)[22].

Todennäköisesti siitepölyn määrä yleensä lisääntyy, ja tämä lisännee hengitysteiden allergiaoireita ja lääkitystä. Ei kuitenkaan juuri ole tutkimuksia siitä (Schmier ja Ebi 2009)[25], lisääntyvätkö vakavammat hengityistieoireet, jotka johtaisivat sairaalahoitoon tai jopa kuolemiin. Suomesta näitä ei ole lainkaan.

Allergeenialtistumisen tiedetään pahentavan oireita herkistyneillä ihmisillä, mutta siitepölyillä - tai allergeeneilla ylipäänsä - näyttää olevan varsin rajallinen rooli allergian ja astman synnyssä. Niinpä ei ole odotettavissa, että siitepölypitoisuuksien muutokset lisäisivät allergisia sairauksia sinänsä, vaikka oireilu allergikoilla voikin lisääntyä.

Maastopalot

Pienhiukkaset (PM2.5, aerodynaaminen halkaisija alle 2.5 mikrometriä) ovat nykyään tärkein ympäristöterveysongelma länsimaissa. (Euroopan Unioni, 2005)[26]. Lyhytaikainen altistus yhdistyy lisääntyneeseen hengitystie- ja sydänsairastuvuuteen ja -kuolleisuuteen. (Halonen ym. 2008, Lanki ym. 2006a)[27] [28] Siksi onkin yllättävää, että maastopalojen yhteydessä on totuttu ajattelemaan vain itse palon vaikutusta, vaikka palot voivat tuottaa savua viikkokausia ja pienhiukkaspitoisuudet nousta moninkertaisiksi korkeisiinkin taustapitoisuuksiin verrattuna jopa satojen kilometrien päässä päästölähteestä. Kaukokulkeutunut maastopalon savu aiheuttaa säännöllisesti pienhiukkasepisodeja myös Suomessa (Niemi 2009)[29]. Tuoreen arvion mukaan jopa yksittäinen episodi voi aiheuttaa merkittävästi lisääntynyttä kuolleisuutta väestössä (Hänninen ym., 2009)[30]. Ilmastonmuutoksen on ennustettu lisäävän ja pahentavan maastopaloja eri puolilla maailmaa (esim. Westerling ym., 2006)[31].

Fossiilisten polttoaineiden pienhiukkasten vaarallisuus on osoitettu (esim. Lanki ym., 2006b)[32], mutta maastopalojen tuottamia pienhiukkasia on tutkittu niukasti. Ne ovat kemialliselta koostumukseltaan erilaisia kuin esimerkiksi liikenteen pienhiukkaset ja voivat siten aiheuttaa erilaisia haittoja. Ei kuitenkaan ole syytä olettaa, että ne olisivat haitattomampia kuin muut pienhiukkaset. Erilaisten hiukkasten myrkyllisyyseroja tutkitaan Suomessa varsin aktiivisesti esimerkiksi BIOHER-projektissa (http://en.opasnet.org/w/Bioher), joten ymmärrys tästä aiheesta on vähitellen paranemassa. Tietoa maastopalojen haitoista voisi saada myös tutkimalla satelliittihavaintoja, pitkäaikaisia meteorologisia tietokantoja ja esimerkiksi IS4FIRES-projektin laskelmia (Sofiev et al, 2009b, Saarikoski et al, 2007). [33] [34]

Talous- ja uimavesien pilaantuminen

Rankkasateiden ja tulvien yleistyminen voi aiheuttaa talous- ja uimavesien saastumista; uutiskynnyksen ylittävien ongelmien lisäksi runsaat sateet voivat aiheuttaa paikallisia pienempiä terveysongelmia pintavesien päästessä saastuttamaan kaivoja. Lämmenneet järvi- ja merivedet voivat edistää syanobakteerien (eli niin kutsuttujen sinilevien) kasvua ja kukintaa. Osa syanobatkeereista erittää myrkkyjä, jotka voivat aiheuttaa iho-oireita uimareille mutta myös vakavampia hermosto- tai muita oireita, jos vettä käytetään talousvetenä. Vaikka isompia terveyshaittoja ei Suomessa ole todettu, uimavesien laatu on tärkeä hyvinvointikysymys. Tässä kappaleessa keskitymme kuitenkin mikrobikontaminaation aiheuttamiin talousvesivälitteisiin epidemioihin.

Sateet ja lumien sulamisvedet ovat maailmanlaajuisesti elintärkeitä juomeveden lähteitä. Pohjoisessa ilmastossamme kuitenkin myös vesiepidemiat johtuvat tyypillisesti joko lumen sulamisvesistä tai syksyn rankkasateista (Miettinen ym. 2001)[35]. Nämä johtuvat maanalaisen, yleensä pienen juomevesilähteen saastumisesta mikrobipitoisilla pintavalumilla (Hunter, 2003)[36]. Myös jätevesihaverien aiheuttamat juomavesilähteiden saastumiset ovat yleisiä. Suurimman osan vesiepidemioista aiheuttavat norovirukset tai kampylobakteerit; Euroopassa myös alkueläimet giardia ja cryptosporidium ovat tärkeitä (Miettinen ym., 2001, Hrudey ym., 2007, Pitkänen ym., 2008)[35] [37] [38].

Kansallisen vesihuollon merkittävin uhka ja tarve järjestelmäkehitykseen koskee pohjavesilaitosten jakaman juomaveden turvallisuutta. Talousvedestä n. 60 % osuus tuotetaan pohjavesilaitoksissa. Tavoitteena on pohjavedenkäytön lisääminen. Suomalaiset pohjavedet ovat hyvin haavoittuvia. Usein uskotaan että maaperä suojaa pohjavesiä ja ettei muuta suojaa tarvita. Todellisuudessa pohjavedenottamoiden sijainti mm. mäkien rinteissä ja hiekkamontuissa sekä yleensä ohut suojaava pintakerros altistaa ne likaantumiselle. Vuosien 1998-2008 aikana Suomessa on esiintynyt 59 vesiepidemiaa, joissa on sairastunut noin 27 000 henkilöä (www.thl.fi). Vesiepidemioiden lisäksi erityisesti rankkasateet ovat aiheuttaneet joka vuosi lukuisia kontaminaatiotilanteita (20-40 kpl/vuosi).

Juomaveden hyvään mikrobiologiseen laatuun tulisi pyrkiä raakaveden laadun huomioivalla riittävän tehokkaalla vedenkäsittelyllä. Käytännössä näin ei tapahdu. Pintavesilaitoksilla saostustekniikka, aktiivihiilisuodatus ja desinfiointi ovat vesiepidemioista saadun kokemuksen perusteella tehokkaita tapoja mikrobien poistamiseen. Pohjavesilaitoksilla veden pääasiallinen käsittely on maaperä itsessään, jonka toivotaan poistavan pintavesien kautta maaperään joutuvat epäpuhtaudet. Tämä ei välttämättä toteudu. Ilmastonmuutos tuo tulevaisuudessa merkittävän haasteen pohjavesien turvallisuudelle. Kesien keskilämpötilan ennustetaan kohoavan 4°C vuosisadan loppuun mennessä.

Riskinarvioinnin kannalta oleellista on äärimmäisten sääilmiöiden huomioon ottaminen. On todennäköistä, että rankkasateiden määrä tulee lisääntymään ilmaston muutoksen takia (ACCLIM II, 2011)[39].

Euroopan kattavana tarpeena on kehittää järjestelmiä sellaisten herkkien pohjavesikohteiden vedenlaadunhallintaan, joiden haavoittuvuus paikallisille sään ääreisilmiöille on merkittävä ja joiden harjurakenne on yksilöllinen. Erityisesti pienet vedenottamot ovat vaarassa, koska niitä ylläpidetään vähäisillä resursseilla. Todellisen pohjaveden lisäksi rantaimeytyskohteissa pintavedenlaadun vaihtelut heijastuvat vesilaitoksella pahimmillaan prosessien toistuvina poikkeustilanteina. Monet suuret vesilaitokset käyttävät pintavettä toisena raakavesilähteenään, jolloin vaatimukset prosessien säädölle ja reagointiherkkyydelle kasvavat entisestään.

Ilmastonmuutos myös aiheuttaa paineita järjestelmällisten riskinarviointien ja riskinhallintatoimien tekemiseen. Erityisesti sään ääri-ilmiöiden aiheuttamia mikrobiriskejä pitäisi arvioida ja niihin varautua mm. vesiturvallisuussuunnitelmin. Myös vedenlaadun jatkuva seuranta korostuu, jotta vakavat ongelmat tunnistetaan, ennen kuin ne ehtivät aiheuttaa terveyshaittaa. Jatkossa vedenottamoinvestointeihin tulisikin liittää automaatiojärjestelmän ulottaminen pohjavesikohteisiin ja niiden ympäristöön.

Tapaturmat

Talven keskilämpötilan noustessa nollan asteen ympärillä vaihtelevat säät voivat lisääntyä ja tällaisen sään raja siirtyä pohjoisemmaksi. Tällä hetkellä sairaalahoitoa (vähintään yksi vuorokausi) vaativien lumesta tai jäästä johtuvien liukastumisonnettomuuksien määrän arvioidaan olevan vuosittain noin 5000, joista aiheutuu lähes 30 000 sairaalahoitopäivää. Arviot sairaanhoitoa vaativien liukastumisonnettomuuksien kokonaismäärästä vuosittain vaihtelevat suuresti, 40 000 – 100 000 välillä (WHO 2011)[40] Talvikaudella 2003–2004 noin 68 prosenttia Töölön tapaturma-asemalla raportoiduista liukastumistapaturmista aiheutui työssä käyville ihmisille (20–59 vuotiaat), joten kustannukset yhteiskunnalle mahdollisista sairauspoissaoloista voivat olla merkittäviä. Lonkkamurtumia tapaturmista oli noin kuusi prosenttia. Rahalliset kustannukset liukkaiden kelien liukastumistapaturmista voivat siis hyvinkin olla kymmeniä miljoonia euroja.

Liukastumisonnettomuuksien määrä ja niistä aiheutuvat kustannukset voivat hyvinkin kasvaa nollan asteen ympärillä vaihtelevien säiden lisääntyessä. Katujen oikea kunnossapito ja jalankulkijoiden tietoisuuden lisääminen oikeista jalkineista ja liukuesteistä ovat keinoja vähentää liukastumistapaturmia ja niistä aiheutuvia kustannuksia. Katujen oikea kunnossapito aiheuttaa luonnollisesti myös kustannuksia.

Liukastumisten lisäksi ilmastonmuutokseen liittyviä tapaturmia sattuu myrskyjen yhteydessä. Sään ääri-ilmiöiden odotetaan lisääntyvän, mikä tarkoittaa myös lisääntyviä tai pahentuvia myrskyjä. Puiden kaatuminen ihmisten tai talojen päälle tai autotielle on Suomessa tyypillinen tapaturmariskiä lisäävä tekijä. Näin kävi esimerkiksi elokuussa 2010, kun trombi iski leirintäalueelle ja kolme loukkaantui. [41]

Vektorivälitteiset taudit

Ilmastonmuutos voi vaikuttaa myös vektorivälitteisten ja muuttolintujen levittämien sairauksien määrään ja leviämiseen. Sairauksien levinnäisyydelle on kuitenkin useita muitakin tekijöitä, ja tarkat syyt tunnetaan huonosti. Esimerkiksi puutiaisaivokuume on Euroopassa yleistynyt, mutta muutokset eivät näytä selittyvän pelkästään ilmastonmuutoksella (IPCC, 2007b)[42].

Suomessa tyypillisiä vektorivälitteisiä tauteja ovat borrelioosi, puutiaisaivokuume, myyräkuume ja pogostantauti. Muualla maailmassa voimakkaasti sääriippuvaisen malarian leviäminen mahdollisesti uusille alueille on merkittävä uhka. Vaikka Suomeen ei leviäisikään uusia vektorivälitteisiä sairauksia, matkailun seurauksena myös suomalaiset voivat altistua niille.

Vektoritautien leviämisessä on syytä muistaa, että ratkaisevaa taudin yleisyydessä ei ole ainoastaan vektorin mahdollisen elinpiirin laajentuminen pohjoiseen, vaan siihen vaikuttavat monet maantieteeseen, käyttäytymiseen ja terveydenhuoltoon liittyvät seikat. Lämpenemisestä huolimatta vektorieläimelle otolliset kosteikot tai heinikot voivat muista syistä vähentyä. Myös ihmisten ajankäyttö erilaisissa ympäristöissä sekä suojaava vaatetus ovat vahvasti kulttuurisidonnaisia ja voivat muuttua ilmastosta riippumatta. Ja kolmanneksi, terveydenhuollon toimivuus ja varautuminen sekä nopea diagnostiikka ja hoito voivat tehokkaasti ehkäistä vektorien leviämisen aiheuttamaa tautipainetta, kunhan asia tiedostetaan ja sen vaatimiin toimiin ryhdytään.

Kaamosoireet

Kaamosoireet ovat yhtä yleisiä koko maassa

Päivän valoisa aika on talvella lyhyt koko maamme alueella. Suomessa 85 aikuista sadasta huomaa vuodenaikojen vaihtumisen vaikuttavan käyttäytymiseensä. Kaamosoireista tai talvisin masennusoireista kärsivien henkilöiden lukumäärä on asukasmäärään suhteutettuna yhtä suuri eri puolilla Suomea. Ongelma on siten yhtä suuri, asuttiinpa sitten missä päin Suomea tahansa. 40 henkilöä sadasta kokee vuosi toisensa jälkeen hyvinvointia heikentäviä oireita kuten unihäiriöitä tai ruokahalun ja painon vaihteluita. Myös muutokset sosiaalisuudessa, mielialassa ja toimintatarmossa ovat yleisiä. Joka kymmenes suomalainen kärsii näiden kaamosoireiden lisäksi myös masennusoireista talven aikana. Talvi toisensa jälkeen toistuvaan kaamosmasennukseen sairastuu yhdeksän suomalaista tuhannesta.

Kaamosoireet altistavat myös fyysisille sairauksille

Sisätilavalaistus vaikuttaa siihen, missä määrin ruokahalu ja paino pyrkivät vaihtelemaan vuoden aikana. Etenkin lihominen toistuvasti aina talven aikana voi muutamassa vuodessa johtaa huomattavaan ylipainoon. Kaamosoireilu kasvattaakin niin kutsutun metabolisen oireyhtymän riskiä. Tämän takia keskivartalon liikakiloja, heikentynyttä sokerinsietoa ja korkeaa verenpainetta vastaan on mahdollista taistella paitsi kuntoa kohentavan liikunnan keinoin, myös kaamosoireita lievittävän valon avulla. Sisätilojen valaistusolosuhteilla on siten merkitystä myös ylipainon ja siitä johtuvien haitallisten terveysvaikutusten ehkäisylle.

Kun luonnon antamat aikamerkit joko puuttuvat, kuten pimeinä talviaamuina, tai kun elimistö lukee niitä epätäsmällisesti, kuten masentuneilla, sisäisen kellon toiminta kärsii rytmihäiriöistä. Valo on myös nopea ja tehokas keino kaamosoireita aiheuttavien sisäisen kellon rytmihäiriöiden estämiseen. Tästä huolimatta sisätilojen valaistus suunnitellaan niin uudisrakentamisen kuin korjausrakentamisen aikana edelleen vain näkemisen tarpeisiin. Näiden tarpeiden ohella valon terveysvaikutusten, jotka välittyvät silmien verkkokalvolta aivoille näköaistihavainnoista riippumatta, ymmärtäminen avartaisi valaistussuunnittelua ja antaisi keinon vaikuttaa laajamittaisesti terveyteen ja hyvinvointiin ihmisten arkiympäristössä.

Itsemurhat kertyvät kevääseen

Itsemurhayritykset ovat Suomessa tavallisimpia keväällä ja itsemurhat alkukesästä. Sekä miehillä että naisilla itsemurhien vuodenaikaisvaihtelu korostuu sitä enemmän, mitä pienempi itsemurhien vuosittainen määrä on. Kun itsemurhia tehdään vähemmän, vuodenaikojen merkitys ja niihin liittyvien biologisten taustatekijöiden vaikutus tulee selvemmin esille. Eräs tällainen altistava tekijä saattaa talvikuukausina olla niukka valo, sillä mitä vähemmän ulkona on auringon globaalisäteilyä, sitä runsaammin itsemurhakuolemia talvikuukausina on.

Sitä vastoin keväisin ilmenevän itsemurhakuolleisuuden huipun tarkemmat syyt ovat edelleen tuntemattomia. Altistava tekijä kevätkuukausina saattaa vuorostaan olla valon runsaus, etenkin uni-valverytmin häiriöille altistava illasta pitenevä valoisa aika. Serotoniinin käyttö hermosolujen kemialliseen viestinsiirtoon on laiskinta talven aikana, mutta vilkastuu nopeasti auringonpaisteen voimistuessa keväällä, mikä voi johtaa mielialan heilahduksiin ja aistiharhoihin. Epäsuotuisissa olosuhteissa ilmaantuessaan ne suurentavat itsemurhariskiä.

Talousvaikutukset tunnetaan huonosti

Ilmastonmuutoksen ja ilmastonmuutokseen sopeutumisen terveyteen liittyvät taloudelliset vaikutukset Suomessa tunnetaan huonosti. Aihetta on tutkittu myös maailmanlaajuisesti hyvin vähän. Joitain arvioita ilmastonmuutoksen vaikutuksista globaalilla tasolla on, mutta ne perustuvat pieneen määrään aineistoa, rajallisiin terveysvaikutuksiin ja Suomen kannalta epärelevantteihin vaikutuksiin, kuten muutoksiin malariaa kantavien hyttysten esiintymisessä. Muuttuva ilmasto kuitenkin aiheuttaa terveyteen liittyviä taloudellisia vaikutuksia myös Suomessa. Kovien pakkasten ja helleaaltojen aiheuttamien kuolemantapausten määrien muuttuminen voi aiheuttaa taloudellisia vaikutuksia. Helleaallot voivat aiheuttaa myös työtehokkuuden vähenemistä. Näiden vaikutusten vähentäminen voi olla kustannustehokas sopeutumiskeino. Lumipeitteen vähenemisen vuoksi talvet voivat pimentyä tämänhetkisestä, mikä vaikuttaa kaamosmasennukseen ja sitä kautta ihmisten työkykyyn. Tällä voi olla merkittäviäkin kansantaloudellisia vaikutuksia. Tämänhetkisenkin tilanteen taloudellisten vaikutusten selvittäminen hyödyttäisi arvioiden tekemistä tulevasta tilanteesta.

Perustelut

Data

Etsi seuraavat raportit, linkkaa tähän ja listaa raporteissa mainitut keskeiset terveysvaikutukset. Useimmat raportit käsittelevät asiaa laajemmin kuin Suomen kannalta, mutta aluksi tietoa haetaan laajalti, ja sen soveltuvuus Suomeen mietitään myöhemmin.


EEA, 2002: The ShAIR scenario. Towards air and climate change outlooks, integrated assessment methodologies and tools applied to air pollution and greenhouse gases. Topic Report 12/2001, European Environment Agency, Copenhagen, Denmark, 116 pp.

Friel S, Dangour AD, Garnett T, Lock K, Chalabi Z, Roberts I, Butler A, Butler CD, Waage J, McMichael AJ, Haines A. Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture. Lancet. 2009 Dec 12;374(9706):2016-25. Epub . PubMed PMID: 19942280.

Hakkarainen, K.: A knowledge practice perspective on technology-mediated learning. Computer-Supported Collaborative Learning (2009) 4:213-231.

Hassi, J. and Rytkönen, M. 2005. Climate warming and health adaptation in Finland. FINADAPT Working Paper 7, Finnish Environment Institute Mimeographs 337, Helsinki, 22 pp. http://www.environment.fi/default.asp?contentid=165158&lan=en

Kettunen J, Lanki T, Tiittanen P, Aalto P, Koskentalo T, Kulmala M, Salomaa V, Pekkanen J. Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke 2007; 38:918-922.

Nisbet, Matthew C. and Mooney, Chris: Framing Science. Science (2007): 316: 56. Doi: 10.1126/science.1142030

Näyhä S. 2005. Environmental temperature and mortality. Int. J. Cirumpolar Health 64: 451–458.

Näyhä S. 2007. Heat mortality in Finland in the 2000s. Int. J. Circumpolar Health 66: 418-424.

Pohjola MV, Pohjola P, Paavola S, Tuomisto JT: Knowledge services in support of converging knowledge, innovation, and practice. 2010 (Submitted).

Rypdal, Kristin, Nathan Rive, Stefan Åström, Niko Karvosenoja, Kristin Aunan, Jesper L. Bak, Kaarle Kupiainen and Jaakko Kukkonen, 2007. Nordic air quality co-benefits from European post-2012 climate policies. Energy Policy 35 (2007) 6309–6322. www.elsevier.com/locate/enpol

Siljamo, P., Sofiev, M., Severova, E., Ranta, H., Kukkonen, J., Polevova, S., Kubin, E. Minin, A. (2008b) Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia. DOI 10.1007/s10453-008-9100-8.

Sivenius J, Torppa J, Tuomilehto J, Immonen-Räihä P, Kaarisalo M, Sarti C, Kuulasmaa K, Mähönen M, Lehtonen A, Salomaa V. Modelling the burden of stroke in Finland until 2030. Int J Stroke 2009; 4:340-345.

Smith KR, Jerrett M, Anderson HR, Burnett RT, Stone V, Derwent R, Atkinson RW, Cohen A, Shonkoff SB, Krewski D, Pope CA 3rd, Thun MJ, Thurston G. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet. 2009 Nov 24.

Sofiev,M., Bousquet,J., Linkosalo,T., Ranta,H., Rantio-Lehtimaki,A., Siljamo,P., Valovirta,E., Damialis,A. (2009a) Pollen, Allergies and Adaptation. Chapter 5 in the book Biometeorology and Adaptation to Climate Variability and Change, (eds. Ebi,K., McGregor,G., Burton,I.), ISBN 978-4020-8920-6, Springer Science, pp.75-107.

Sofiev, M., Galperin, M., Genikhovich, E. (2008) Construction and evaluation of Eulerian dynamic core for the air quality and emergency modeling system SILAM. NATO Science for piece and security Serties C: Environmental Security. Air pollution modelling and its application, XIX, Borrego, C., Miranda, A.I. (eds.), Springer, pp. 699-701.

Sofiev, M., Siljamo, P., Ranta, H., Rantio-Lehtimäki, A. (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J. on Biometeorology, DOI 10 1007/s00484-006-0027-x, 50, 392-402.16. Siljamo,P., Sofiev,M., Ranta,H., Linkosalo,T., Kubin,E., Ahas,R., Genikhovich, E., Jatczak, K, Jato,V.,Nekovar,J., Minin,A., Severova,E., Shalaboda,V. (2008) Representativeness of point-wise phenological Betula data observed in different parts of Europe. Global Ecology and Biogeography, 17(4), 489-502, DOI: 10.1111/j.1466-8238.2008.00383.x.

STM, 2008. Minister Risikko: Not enough debate in Finland about how climate change affects health, Press release, Finnish Ministry of Social Affairs and Health, 24 June 2008. Accessed (5.1.2010): http://www.stm.fi/en/pressreleases/pressrelease/view/1238807

van der Linden P. and J.F.B. Mitchell (eds.) 2009: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UK, 160 pp.

VNK: Valtioneuvoston tulevaisuusselonteko ilmasto- ja energiapolitiikasta: kohti vähäpäästöistä Suomea. Valtioneuvoston kanslian julkaisusarja 28/2009.

von Hertzen LC, Savolainen J, Hannuksela M, Klaukka T, Lauerma A, Mäkelä MJ, Pekkanen J, Pietinalho A, Vaarala O, Valovirta E, Vartiainen E, Haahtela T. Scientific rationale for the Finnish Allergy Programme 2008-2018: emphasis on prevention and endorsing tolerance. Allergy

von Klot S, Peters A, Aalto P, Bellander T, Berglind N, D’Ippoliti D, Elosua R, Hörmann A, Kulmala M, Lanki T, Löwel H, Pekkanen J, Picciotto S, Sunyer J, Forastiere F for the HEAPSS Study Group. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in European cities. Circulation 2005; 112:3073-3079.2009;64(5):678-701

WHO-the joint task force on health aspects of air pollution of The World Health Organization/European Centre for Environment and Health, and the executive body for the convention on long-range transboundary air pollution. Health risks of air pollution from biomass combustion. 12th meeting report, Bonn, Germany, 25.-26.5.2009. http://www.unece.org/env/documents/2009/EB/wge/ece.eb.air.wg.1.2009.12.e.pdf

Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, Beevers S, Chalabi Z, Chowdhury Z, Cohen A, Franco OH, Haines A, Hickman R, Lindsay G, Mittal I, Mohan D, Tiwari G, Woodward A, Roberts I. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 2009 Dec 5;374(9705):1930-43. Epub 2009 Nov 26. PubMed PMID: 19942277.


Katso myös

ISTO: Kustannus-hyötyanalyysi osana ilmastopäätöksentekoa

Avainsanat

Ilmastonmuutos, sopeutuminen, terveys, terveysvaikutus, helle, ääri-ilmiö, lämpötila, vektoritauti, tapaturma, vesiepidemia, maastopalo, siitepöly

Viitteet

  1. Confalonieri, U., B. Menne, R. Akhtar, K.L. Ebi, M. Hauengue, R.S. Kovats, B. Revich and A. Woodward, 2007: Human health. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 391-431.
  2. IPCC, 2007b: Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability. Chapter 8: Human health. http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch8.html
  3. Pekkanen J: Suomen Lääkärilehti 2010 (65): 43: 3469.
  4. Rypdal, Kristin, Nathan Rive, Stefan Åström, Niko Karvosenoja, Kristin Aunan, Jesper L. Bak, Kaarle Kupiainen and Jaakko Kukkonen, 2007. Nordic air quality co-benefits from European post-2012 climate policies. Energy Policy 35 (2007) 6309–6322. www.elsevier.com/locate/enpol
  5. MMM, 2005. Ilmastonmuutoksen kansallinen sopeutumisstrategia [Marttila, V. ym. (toim.)], Maa- ja metsätalousministeriö, Helsinki, ladattu (16.11.2011): http://www.mmm.fi/fi/index/etusivu/ymparisto/ilmastopolitiikka/ilmastomuutos.html
  6. 6,0 6,1 Hassi, J. ja Rytkönen, M. 2005. Climate warming and health adaptation in Finland. FINADAPT Working Paper 7, Finnish Environment Institute Mimeographs 337, Helsinki, 22 pp. http://www.environment.fi/default.asp?contentid=165158&lan=en Viittausvirhe: Virheellinen <ref>-elementti; nimi ”hassi2005” on määritetty usean kerran eri sisällöillä
  7. Markandya A, Armstrong BG, Hales S, Chiabai A, Criqui P, Mima S, Tonne C, Wilkinson P. Public health benefits of strategies to reduce greenhouse-gas emissions: low-carbon electricity generation. Lancet. 2009 Dec 12;374(9706):2006-15. http://pubmed.gov/19942282
  8. Smith KR, Jerrett M, Anderson HR, Burnett RT, Stone V, Derwent R, Atkinson RW, Cohen A, Shonkoff SB, Krewski D, Pope CA 3rd, Thun MJ, Thurston G. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet. 2009 Nov 24.
  9. Wilkinson P, Smith KR, Davies M, Adair H, Armstrong BG, Barrett M, Bruce N, Haines A, Hamilton I, Oreszczyn T, Ridley I, Tonne C, Chalabi Z. Public health benefits of strategies to reduce greenhouse-gas emissions: household energy. Lancet. 2009 Dec 5;374(9705):1917-29. http://pubmed.gov/19942273
  10. Kovats, R.S. and Hajat, S. 2008. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 29: 9.1–9.15.
  11. 11,0 11,1 Näyhä S. 2005. Environmental temperature and mortality. Int. J. Cirumpolar Health 64: 451–458.
  12. Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, Cadum E, Caranci N, de’Donato F, De Lisio S, De Moreno M, Michelozzi P, Miglio R, Pandolfi P, Picciotto S, Rognoni M, Russo A, Scarnato C, Perucci CA. Vulnerability to heat-related mortality. A multi-city, population based. case-crossover analysis. Epidemiology 2006; 17:315.323.
  13. Keatinge WR, Donaldson GC, Cordioli E, Martinelli M, Kunst AE, Mackenbach JP, Nayha S, Vuori . 2000. Heat-related mortality in warm and cold regions of Europe: observational study. BMJ 321: 670-673.
  14. Donaldson, G.C., Keatinge, W.R.and Nayha, S. 2003. Changes in summer temperature and heat-related mortality since 1971 in North Carolina, South Finland, and Southeast England. Environ. Res. 91:1–7.
  15. Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., Anderson, H.R., Bisanti, L., D’Ippoliti, D., Danova, J., Forsberg, B., Medina, S., Paldy, A., Rabczenko, D., Schindler, C. and Michelozzi, P. 2008. Heat Effects on Mortality in 15 European Cities. Epidemiology 19(5): 711-719.
  16. IPCC, 2007a: Summary for policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change \[Solomon, S. et al. (eds.)\]. Cambridge University Press, 1-18.
  17. IPCC, 2007b: Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability. Chapter 8: Human health. http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch8.html
  18. Räisänen, J., 2010: Ilmastonmuutos ja heinäkuun helteet. Ilmastokatsaus 9/2010, IL, s. 4-6 http://www.atm.helsinki.fi/~jaraisan/Heinakuu2010.pdf
  19. Euromomo-projektin kotisivu http://www.euromomo.eu/
  20. Ebi, K.L., Burton, I., McGregor, G. (editors) (2009) Biometeorology for adaptation to climate variability and change. Springer, ISBN 978-1-4020-8920-6, 280pp.
  21. Damialis, A., Halley, J.M., Gioulekas, D., Vokou, D. (2007) Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmosph.Environ., 41, 7011-7021.
  22. 22,0 22,1 Ranta, H., Hokkanen, T., Linkosalo, T., Laukkanen, L., Bondestam, K., Oksanen, A. (2008) Male flowering of birch: Spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecol and Management, 255, 643-650.
  23. Sofiev, M., Siljamo, P., Ranta, H., Rantio-Lehtimäki, A. (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J. on Biometeorology, DOI 10 1007/s00484-006-0027-x, 50, 392-402.16.
  24. Siljamo,P., Sofiev,M., Ranta,H., Linkosalo,T., Kubin,E., Ahas,R., Genikhovich, E., Jatczak, K, Jato,V.,Nekovar,J., Minin,A., Severova,E., Shalaboda,V. (2008) Representativeness of point-wise phenological Betula data observed in different parts of Europe. Global Ecology and Biogeography, 17(4), 489-502, DOI: 10.1111/j.1466-8238.2008.00383.x.
  25. Schmier JK, Ebi KL. The impact of climate change and aeroallergens on children's health. Allergy Asthma Proc. 2009 May-Jun;30(3):229-37.
  26. European Union, Clean Air for Europe (CAFÉ) Programme, 2005. http://ec.europa.eu/environment/air/cafe/index.htm
  27. Halonen JI, Lanki T, Yli-Tuomi T, Kulmala M, Tiittanen P, Pekkanen J. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax. 2008 Jul;63(7):635-41.
  28. Lanki T, Pekkanen J, Aalto P, Elosua R, Berglind N, D'Ippoliti D, Kulmala M, Nyberg F, Peters A, Picciotto S, Salomaa V, Sunyer J, Tiittanen P, von Klot S, and Forastiere F. Associations of traffic-related air pollutants with hospitalisation for first acute myocardial infarction. The HEAPSS study. Occup Environ Med 2006a; 63:844-851.
  29. Niemi JV, Saarikoski S, Aurela M, Tervahattu H, Hillamo R, Westphal DL, Aarnio P, Koskentalo T, Makkonen U, Vehkamäki H, Kulmala M. Long-range transported episodes of fine particles in Southern Finland during 1999-2007. Atmospheric Environment 2009; 43:1255-1264.
  30. Hänninen O, Salonen RO, Koistinen K, Lanki T, Barregård L, Jantunen M. Population exposure to fine particles and estimated excess mortality in Finland from an East-European wildfire episode in 2002. J Expo Sci Environ Epidemiol 2009; 19:414-422.
  31. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 2006; 313:940-943.
  32. Lanki T, de Hartog JJ, Heinrich J, Hoek G, Janssen NAH, Peters A, Stölzel M, Timonen KL, Vallius M, Vanninen E, Pekkanen J. Can we identify sources of fine particles responsible for exercise-induced ischemia on days with elevated air pollution? The ULTRA study. Environ Health Perspect 2006b; 114:655-660.
  33. Sofiev,M., Vankevich,R., Lotjonen,M., Prank,M., Petukhov,V., Ermakova,T., J.Koskinen, Kukkonen,J. (2009b). An operational system for the assimilation of satellite information on wild-land fires for the needs of air quality modelling and forecasting. Atmos. Chem. Phys., 9, 6833-6847, http://www.atmos-chem-phys.net/9/6833/2009/acp-9-6833-2009.html.
  34. Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K., Teinilä, K., Karppinen, A., Kukkonen, J., Hillamo, R. (2007) Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: experimental and modelling assessments. Atmosph. Environ., 41, 3577-3589.
  35. 35,0 35,1 Miettinen et al. 2001. Waterborne epidemics in Finland in 1998‐1999. Water Sci Technol. 43:67‐71.
  36. Hunter, P.R. 2003. Climate change and waterborne and vector-borne disease. Journal of Applied Microbiology, 94: 37–46
  37. Hrudey SE, Hrudey EJ. 2007. Water Environment Research 79: 233-45
  38. Pitkanen T, Miettinen IT, Nakari UM et al. 2008. Journal of Water and Health 6: 365-76
  39. ACCLIM II-hankkeen lyhyt loppuraportti http://ilmatieteenlaitos.fi/c/document_library/get_file?uuid=f72ce783-0bae-4468-b67e-8e280bec1452&groupId=30106
  40. WHO 2011: European Hospital Morbidity Database (HMDB). http://data.euro.who.int/hmdb/index.php
  41. Helsingin Sanomat 4.8.2010: Kolme loukkaantui myrskyssä Uuraisten leirintäalueella. http://www.hs.fi/kotimaa/artikkeli/1135259082473
  42. IPCC, 2007b: Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability. Chapter 8: Human health. http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch8.html

Grimaldi, S., Partonen, T., Saarni, S. I., Aromaa, A. and Lönnqvist, J. Indoors illumination and seasonal changes in mood and behavior are associated with the health-related quality of life. Health Qual Life Outcomes 2008;6:56.

Grimaldi, S., Englund, A., Partonen, T., Haukka, J., Pirkola, S., Reunanen, A., Aromaa, A. and Lönnqvist, J. Experienced poor lighting contributes to the seasonal fluctuations in weight and appetite that relate to the metabolic syndrome. J Environ Public Health 2009;2009:165013.

Grimaldi, S., Partonen, T., Haukka, J., Aromaa, A. and Lönnqvist, J. Seasonal vegetative and affective symptoms in the Finnish general population: Testing the dual vulnerability and latitude effect hypotheses. Nord J Psychiatry 2009;63:397-404.

Hiltunen, L., Suominen, K., Lönnqvist, J. and Partonen, T. Relationship between daylength and suicide in Finland. J Circadian Rhythms 2011;9:10.

Ruuhela, R., Hiltunen, L., Venäläinen, A., Pirinen, P. and Partonen T. Climate impact on suicide rates in Finland from 1971 to 2003. Int J Biometeorol 2009;53:167-175.

Aiheeseen liittyviä tiedostoja

<mfanonymousfilelist></mfanonymousfilelist>