(vahinkopoisto. Kumottu muokkaus 36817, jonka teki Jouni (keskustelu))
(15 välissä olevaa versiota samalta käyttäjältä ei näytetä)
Rivi 1:
Rivi 1:
[[Luokka:Projekti]]
[[Luokka:Projekti]]
{{arviointi|moderaattori=Jouni}}
{{arviointi|moderaattori=Jouni}}
'''Ruori''' on VN-TEAS-hanke, jossa arvioidaan erilaisia ruokaan liittyviä riskitekijöitä, niiden vähentämispotentiaalia ja niiden terveys- ja talousvaikutuksia.
'''Ruori''' on VN-TEAS-hanke, jossa arvioidaan erilaisia ruokaan liittyviä riskitekijöitä, niiden vähentämispotentiaalia ja niiden terveys- ja talousvaikutuksia. Hankkeen [http://urn.fi/URN:ISBN:978-952-287-796-3 loppuraportti] on julkaistu 2019.
== Rajaus ==
== Rajaus ==
Rivi 7:
Rivi 7:
=== Kysymys ===
=== Kysymys ===
Millaista tautitaakkaa Suomessa aiheuttavat Ruori-altisteet (tyydyttynyt rasva, vähäiset vihannekset, vähäiset hedelmät, liiallnen suola, dioksiinit, lyijy, toksoplasma, norovirus ja legionella?
Millaista tautitaakkaa Suomessa aiheuttavat Ruori-altisteet (tyydyttynyt rasva, vähäiset vihannekset, vähäiset hedelmät, liiallnen suola, dioksiinit, lyijy, aflatoksiini, toksoplasma, norovirus, trikinella ja legionella) ja miten erilaiset vähentämistoimet vaikuttavat?
=== Aikataulu ja käyttäjät ===
=== Aikataulu ja käyttäjät ===
* Hanke alkoi 2018 ja loppuu 30.6.2019.
* Hanke alkoi 2018 ja loppui 30.6.2019.
* Toteuttajina ovat Ruokavirasto, THL ja Helsingin yliopisto.
* Toteuttajina ovat Ruokavirasto, THL ja Helsingin yliopisto.
* Seuraavat skenaariot ovat tarkastelussa:
* Seuraavat skenaariot ovat tarkastelussa:
**
** Listeria: mikrobinäytteitä otetaan elintarvikkeiden lisäksi tuotantoympäristöstä.
** Norovirus: pintapuhtausnäytteitä otetaan suuratalouskeittiöistä ja sellaisenaan syötäviä ruokia valmistavista laitoksista.
** Toksoplasma: kaikki raskaana olevat tutkitaan toksoplasman varalta.
** Trikinella: trikinella tutkitaan ainoastaan vientiin menevistä sianruhoista.
** Vierasesineet: tarkastelusta luovuttiin
** Aflatoksiini: tuontipähkinöiden valvontanäytteitä lisätään 10 %.
** Dioksiinit: Itämeren kala vaihdetaan järvikalaan.
** Lyijy: laihdutusvalmiteisiin ja teejauheisiin aloitetaan tehovalvonta.
Ravitsemustekijät osoittautuivat huomattavasti tärkeämmiksi tautitaakkaa aiheuttaviksi tekijöiksi kuin ruoassa olevat ympäristömyrkyt. Myös ravitsemukseen vaikuttamalla pystyttiin vaikuttamaan kansanterveyteen enemmän, joskin myös mikrobiriskien vähentämiseen löytyi tehokkaita keinoja. Päätulokset on esitetty kuvissa. Tarkemmat tulokset löytyvät [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=IMy5dmICIwDKkesL tästä malliajosta].
=== Pohdinta ===
[[File:Tautitaakka maittain ruokavalio ja hygienia.svg|thumb|400px|Maakohtainen tautitaakan vertailu ruokavalioon ja toisaalta hygieniaan liittyvistä tunnetuista riskitekijöistä. Tiedot: IHME-instituutti.]]
Kuvassa esitetään maakohtainen kokonaistautitaakka toisaalta tunnettujen ruokavalioon liittyvien riskitekijöiden (poislukien aliravitsemus) ja toisaalta hygieniaan liittyvien riskitekijöiden suhteen. Hygienia sisältää käsienpesun, puhtaan juomaveden ja sanitaation eli siinä ei ole mukana nimenomaan ruokavälitteisiä mikrobeja, mutta se antaa kuitenkin kohtalaisen kuvan mikrobivälitteisistä taudeista maavertailua varten.
On syytä huomata, että asteikot ovat logaritmisia ja ruokavalioriskien suhteen maiden välillä on yli kymmenkertaisia eroja mutta toisaalta hygienian osalta erot voivat olla yli tuhatkertaisia. Suomi on ravitsemuksen suhteen länsieurooppalaista keskikastia mutta hygieniassa maailman parhaiden joukossa. Luvuista saa vertailukelpoisia tämän raportin lukuihin suhteuttamalla niitä Suomen väkilukuun eli kertomalla noin viidelläkymmenellä.
Globaalissa vertailussa voi sanoa, että ravitsemuksen suhteen on selvästi parannettavaa. Jopa tautitaakan puolittaminen vie vasta tasolle, jolla lukuisat maat tällä hetkellä todellisuudessa ovat eli joka on periaatteessa aivan saavutettavissa. Kulttuurin muuttaminen on toki aina vaikeaa, myös ruokakulttuurin.
Sen sijaan hygieniassa ei juuri kukaan ole päässyt parempaan tilanteeseen, joten sillä puolella huomio on syytä kiinnittää tekijöihin, jotka saattavat rapauttaa hyvää nykytilannetta. Esimerkiksi salmonellan osalta Suomen tilanne jopa lähinaapureihin verrattuna on erittäin hyvä, eikä tästä ole syytä luopua. Tosin vaikka romahtaisimme hygieniassa EU:n keskitasolle, absoluuttinen tautitaakan lisäys olisi Suomessa vain suuruusluokkaa 500 DALYa vuodessa. Vastaavan suuruinen parannus olisi helposti saavutettavissa ravitsemuksen puolella.
Ruori-hankkeessa osoittautui yllättävän vaikeaksi löytää tietoa elintarvikevalvonnan vaikutuksesta hygieniaan. Tärkeää olisi pystyä arvioimaan valvonnassa tehtävän muutoksen vaikutusta tautitaakan muutokseen. Hygienian osalta kiinnostus on nimenomaan niin päin, että voidaanko valvontaa keventää ilman kostautumista tautien lisääntymisenä. Tätä tietoa ei järjestelmällisesti synny, koska valvonta on yleensä pakollista ja siksi vaihtoehdosta ei kerry kokemusta.
Tilannetta voisi parantaa kahdella eri tavalla. Ensinnäkin systemaattisesti pitäisi kuvata, mitä tehtiin tilanteessa, jossa havaittiin laatupoikkeama. Tieto pois vedetyistä eristä tai muista toimista auttaa arvioimaan, kuinka suuri haitta onnistuttiin välttämään eli mikä oli valvonnan lisäarvo. Trikinella on tästä mielenkiintoinen ääriesimerkki: koska positiivisia näytteitä ei tule, valvonta ei vaikuta toimintaan vaikka periaatteessa eriä vedettäisiin kontaminaatiotapauksessa pois. Valvonnan arvo kontaminaation vähentämisessä on siis nolla, ja hyöty tulee ainoastaan hyvän maineen säilyttämisen kautta. Muiden mikrobien osalta tällaista tietoa ei Ruorin käytössä ollut, vaikka tietoa elintarviketeollisuudella itsellään olisikin. Tässä ehkä tarvittaisiin yhteistyötä tiedon saamiseksi yhteiskunnan käyttöön.
Toinen tapa on tehdä kokeluja toisaalta tuotantoprosessissa (kalarehuvalmisteiden puhdistamista dioksiineista kokeiltiin aikanaan menestyksekkäästi, joten se on Suomessa nykyään tavallista eikä pitoisuuksien valvonta ei ole kovin tarpeellista) ja toisaalta tehokkaimman valvontapisteen tunnistamisessa (HACCP eli hazard analysis and critical control point on edelleen hyvä käytäntö).
Ruokavalion osalta tilanne on erilainen. Ei ole pelkoa, että jokin ruoka yllättäen sisältäisi enemmän suolaa tai vähemmän hedelmää kuin toisen erän valmiste; terveyteen vaikuttavat tekijät ovat siis hyvin ennakoitavissa ja vakioitu. Haasteet ovat yksilöiden käyttäytymisen ohjailussa niin, että hänen kokonaisruokavalionsa olisi terveellinen. Yksittäisen tuotteen suosiminen tai rajoittaminen ei riitä. Vaikuttamisen keinot kuten verotus myös ovat karkeita eli eivät kohdistu tehokkaasti oikeisiin yksilöihin tai asioihin.
Tässäkin kokeilut voisivat tuottaa uudenlaista lisäarvoa. Kansalaispalkkakokeilu toi suppeudestaan huolimatta arvokasta tietoa siitä, mihin kansalaispalkka vaikuttaa ja mihin ei. Samalla tavalla terveellisen ruoan verokohtelua, sokeriveroa tai sydänmerkkiaterioita ja niiden tehoa ja toimivuutta pitäisi yrittää kokeilujen avulla mitata ja onnistuneita keinoja ottaa laajaan käyttöön. Elintarvike- ja kaupan ala toki tekee jatkuvasti omia kokeilujaan ja lienee varsin hyvin perillä siitä, miten joidenkin tuotteiden myyntiä voidaan lisätä sopivalla sijoittelulla, hinnoittelulla ja pakkauksilla. Tässä tavoitteet vain ovat kansanterveyden kannalta osittain ristiriitaiset. On myös vaikea keksiä, miten nämä liikesalaisuudet voitaisiin saada yhteiskunnan käyttöön terveyden edistämiseksi.
Kun tarkastellaan eri maiden tilannetta ja ruoan ravitsemuksellisia ja hygieenisiä riskejä kokonaisuutena, voidaan tehdä kokoava päätelmä. Valvonta on hyödyllisimmillään eli tieto arvokkaimmillaan silloin, kun toiminnan, raaka-aineiden tai tuotteiden laatu vaihtelee paljon. Silloin valvonnan avulla voidaan tehokkaasti ohjata toimintaa turvallisemmaksi esimerkiksi hylkäämällä saastuneita eriä. Huonon hygienian oloissa tiedetään käsien pesun välttämättömyys ilman mittauksiakin, ja huippuunsa viritetyssä elintarvikeketjussa syntyy kovin vähän hylättävää. Ravitsemuspuolella laadun vaihtelu ei ole elintarvikkeissa vaan ihmisten tavassa käyttää epäterveellisiä tuotteita. Myös ravitsemusriskien kokemisessa ja tietämyksessä lienee erittäin suuria yksilöllisiä eroja. Näiden tutkiminen ja ymmärtäminen auttaisi suunnittelemaan sellaisia kansanterveyttä parantavia toimia, joilla ei kuitenkaan rajoitettaisi liikaa ihmisten mahdollisuuksia syödä myös herkkuja.
== Perustelut ==
== Perustelut ==
Rivi 28:
Rivi 64:
* Vähävihanneksinen ruokavalio: vihannesten kulutus alle 4 annosta (400 g yhteensä) (sisältää tuoreet, pakastetut, keitetyt, säilötyt ja kuivatut vihannekset mukaan lukien palkokasvit mutta ei sisällä suolaan tai etikkaan säilöttyjä vihanneksia eikä pähkinöitä, siemeniä tai tärkkelyspitoisia vihanneksia kuten perunaa tai maissia). Diet low in vegetables: Consumption of less than 4 servings (400 g total) of vegetables per day (includes fresh, frozen, cooked, canned, or dried vegetables including legumes but excluding salted or pickled, juices, nuts and seeds, and starchy vegetables such as potatoes or corn).
* Vähävihanneksinen ruokavalio: vihannesten kulutus alle 4 annosta (400 g yhteensä) (sisältää tuoreet, pakastetut, keitetyt, säilötyt ja kuivatut vihannekset mukaan lukien palkokasvit mutta ei sisällä suolaan tai etikkaan säilöttyjä vihanneksia eikä pähkinöitä, siemeniä tai tärkkelyspitoisia vihanneksia kuten perunaa tai maissia). Diet low in vegetables: Consumption of less than 4 servings (400 g total) of vegetables per day (includes fresh, frozen, cooked, canned, or dried vegetables including legumes but excluding salted or pickled, juices, nuts and seeds, and starchy vegetables such as potatoes or corn).
Luken tilastoista löytyy tietoja kalansyönnistä Suomessa. Järvikalaa ei ole eritelty, mutta muut kuin viljellyt ja merilajit ovat yhteensä 2.6 kg/a henkeä kohti. https://stat.luke.fi/en/fish-consumption-2017_en
Luken tilastoista löytyy tietoja kalansyönnistä Suomessa. Järvikalaa ei ole eritelty, mutta muut kuin viljellyt ja merilajit ovat yhteensä 2.6 kg/a henkeä kohti. [https://stat.luke.fi/en/fish-consumption-2017_en]. Kalansyöntidatat löytyvät myös Opasnetistä [[:op_en:Goherr: Fish consumption study]].
Voiko DALYt muuntaa euroiksi, ja miten se tehdään?
Voiko DALYt muuntaa euroiksi, ja miten se tehdään?
Rivi 37:
Rivi 73:
* Toisaalta Hammitt todistelee, että hinta per tilastollinen elämä (value per statistical life, VSL) ja hinta per DALY muuttuvat epälineaarisesti suhteessa toisiinsa, eikä näin ollen olisi mahdollista käyttää hyvinvointimuutoksen mittarina vakiolla kerrottua DALY-arvoa, ainakaan taloudellisen hyvinvointiteorian (economic welfare theory) puitteissa.<ref>Hammitt, J.K. (2013) Admissible utility functions for health, longevity, and wealth: integrating monetary and life-year measures. J Risk Uncertain 47: 311. https://doi.org/10.1007/s11166-013-9178-4</ref>
* Toisaalta Hammitt todistelee, että hinta per tilastollinen elämä (value per statistical life, VSL) ja hinta per DALY muuttuvat epälineaarisesti suhteessa toisiinsa, eikä näin ollen olisi mahdollista käyttää hyvinvointimuutoksen mittarina vakiolla kerrottua DALY-arvoa, ainakaan taloudellisen hyvinvointiteorian (economic welfare theory) puitteissa.<ref>Hammitt, J.K. (2013) Admissible utility functions for health, longevity, and wealth: integrating monetary and life-year measures. J Risk Uncertain 47: 311. https://doi.org/10.1007/s11166-013-9178-4</ref>
Pitoisuusanalyysien kustannukset (poistettu).
Pitoisuusanalyysien kustannukset on poistettu tästä.
Trikiinin valvontakustannukset: Tämän artikkelin mukaan trikiinin DALYt ovat vain luokkaa 100 DALY/miljardi ihmistä, joten valvonta ei ole mielekästä<ref>Brecht Devleesschauwer, Nicolas Praet, Niko Speybroeck, Paul R. Torgerson, Juanita A. Haagsma, KrisDe Smet, K. Darwin Murrell, Edoardo Pozio, Pierre Dorny. (2015) The low global burden of trichinellosis: evidence and implications. International Journal for Parasitology 45, 2–3, 95-99. [https://doi.org/10.1016/j.ijpara.2014.05.006] [https://www.sciencedirect.com/science/article/pii/S0020751914001374]</ref>.
Trikiinin valvontakustannukset: Tämän artikkelin mukaan trikiinin DALYt ovat vain luokkaa 100 DALY/miljardi ihmistä, joten valvonta ei ole mielekästä<ref>Brecht Devleesschauwer, Nicolas Praet, Niko Speybroeck, Paul R. Torgerson, Juanita A. Haagsma, KrisDe Smet, K. Darwin Murrell, Edoardo Pozio, Pierre Dorny. (2015) The low global burden of trichinellosis: evidence and implications. International Journal for Parasitology 45, 2–3, 95-99. [https://doi.org/10.1016/j.ijpara.2014.05.006] [https://www.sciencedirect.com/science/article/pii/S0020751914001374]</ref>.
==== Skenaarioista ====
Tyydyttyneen rasvan ja suolan osalta tarkastellaan sydänmerkkiaterioita. Oletetaan, että kaikki lounasruokaloiden ateriat muuttuvat sydänmerkkiaterioiksi. Väestön suuruudeksi oletetaan nykyinen lounaspaikkaruokailijoiden päivittäinen määrä eli 279000, ja heille oletetaan pysyvä muutos ruokavalioon.
Kun ei murehdita altistusjakaumasta, voidaan keskimääräisestä saannista vähentää vähennys, ja tämä muutos kohdennetaan vain 25-69-vuotiaaseen alaryhmään (jos alaryhmä on kyseiselle vasteelle määritelty). Skenaariossa kerrotaan PAF luvulla, joka saa arvon 1 nykyisellä altistuksella ja arvon 0 suosituksen mukaisella arvolla. Tätäitä laimennetaan altistujien osuudella. Niinpä käytetään tätä kaavaa kertoimen laskemiseksi:
PAF_factor = 1-(reduction / (intake-recommendation)) * eaters / population
'''Suola:
Sydänmerkki vähensi 2016 suolan saantia 1 g/d eli 4.2-5.2 g/vk eli 10 %. Tässä oletetaan 3.3-5.1 g/vk vähennys eli 0.471 - 0.729 g/d myös viikoloput huomioiden. Jula (2011) arvioi, että 1 g/d vähennys koko väestössä alentaa kustannuksia 70 Me/a. (Tarkista onko tautitaakkaa!)
Suositus on enintään 5 g/d. Nykysaanti (Valsta 2018) on miehillä 8.7 g/d ja naisilla 6.4 g/d ja tätä käytetään tasajakaumana koko väestölle, koska sukupuolia ei tarkastella erikseen.
'''Rasva:
Sydänmerkkiateria vähensi saantia 14 E%:sta 10 E%:iin. Tässä oletetaan, että vähennys on 22.0-58.1 g/vk.
Suositus on enintään 10 E%.
Valsta (2018): Tyydyttyneiden rasvahappojen osuus kokonaisenergiasta oli naisilla 14 % (28 g/vrk) ja miehillä 15 % (38 g/vrk). Naisilla muuntosuhde on 2 g /d /E% ja miehillä 2.53 g /d /E%, käytetään 2.25 g /d /E%. Grammamääräinen altistus on muutettava energiaosuudeksi.
Tyydyttyneen rasvan ja suolan osalta tarkastellaan sydänmerkkiaterioita. Oletetaan, että kaikki lounasruokaloiden ateriat muuttuvat sydänmerkkiaterioiksi. Väestön suuruudeksi oletetaan nykyinen lounaspaikkaruokailijoiden päivittäinen määrä eli 279000, ja heille oletetaan pysyvä muutos ruokavalioon.
Kun ei murehdita altistusjakaumasta, voidaan keskimääräisestä saannista vähentää vähennys, ja tämä muutos kohdennetaan vain 25-69-vuotiaaseen alaryhmään (jos alaryhmä on kyseiselle vasteelle määritelty). Skenaariossa kerrotaan PAF luvulla, joka saa arvon 1 nykyisellä altistuksella ja arvon 0 suosituksen mukaisella arvolla. Tätäitä laimennetaan altistujien osuudella. Niinpä käytetään tätä kaavaa kertoimen laskemiseksi:
PAF_factor = 1-(reduction / (intake-recommendation)) * eaters / population
'''Suola:
Sydänmerkki vähensi 2016 suolan saantia 1 g/d eli 4.2-5.2 g/vk eli 10 %. Tässä oletetaan 3.3-5.1 g/vk vähennys eli 0.471 - 0.729 g/d myös viikoloput huomioiden. Jula (2011) arvioi, että 1 g/d vähennys koko väestössä alentaa kustannuksia 70 Me/a. (Tarkista onko tautitaakkaa!)
Suositus on enintään 5 g/d. Nykysaanti (Valsta 2018) on miehillä 8.7 g/d ja naisilla 6.4 g/d ja tätä käytetään tasajakaumana koko väestölle, koska sukupuolia ei tarkastella erikseen.
'''Rasva:
Sydänmerkkiateria vähensi saantia 14 E%:sta 10 E%:iin. Tässä oletetaan, että vähennys on 22.0-58.1 g/vk.
Suositus on enintään 10 E%.
Valsta (2018): Tyydyttyneiden rasvahappojen osuus kokonaisenergiasta oli naisilla 14 % (28 g/vrk) ja miehillä 15 % (38 g/vrk). Naisilla muuntosuhde on 2 g /d /E% ja miehillä 2.53 g /d /E%, käytetään 2.25 g /d /E%. Grammamääräinen altistus on muutettava energiaosuudeksi.
* Malliajo 4.6.2019, ovariablet haetaan ao. sivuilta ja OpasnetUtilsista on päivitetty versio (ei toimi vanhalla) [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=QAoBrPJXrwJl8qmv]
* Malliajo 12.6.2017 jossa suolan ja rasvan skenaario [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=X47Rgy5MFnb4C8VN]
* Malliajo 12.6. myös muita skenaarioita [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=64AGnWrXc5WO7phW]
* Malliajo 16.6.2019 melkein toimii [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=ldfYOznqBZbHm3Hh] [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=llHM0glMDTt4GWKp]
* Malliajo 18.6.2019 toimii [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=t5EGBhGEkdqgsZaV] [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=PRqtiUhfxvL0V8hK]
* Malliajo 9.8.2019 perustuu BoDattr2-koodiin [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=yvkPYIc6XWyOiQdL]
* Malliajo 17.6.2019 ja lopulta näyttäisi toimivan paitsi dioksiinit liian suuret [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=S95MOWUjSeRMtU3B]
* Malliajo 18.6.2019 toimii omalla koneella [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=PRqtiUhfxvL0V8hK]
* Malliajo 18.6.2019 toimii omalla koneella [http://fi.opasnet.org/fi-opwiki/index.php?title=Toiminnot:RTools&id=PRqtiUhfxvL0V8hK]
Rivi 553:
Rivi 641:
##############################
##############################
# Pb exposure in children
# Data feched from \\helfs01.thl.fi/documents/YMAL/Projects/TUORI/tautitaakka/lyijy/Lyijy_tautitaakkadata.xlsx
==== Maavertailu hygienian ja ravinnon tautitaakasta ====
Koodin ajamiseksi on ensin haettava [http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2017-permalink data] IHME-instituutista. Koodi tuottaa kuvan {{#l:Tautitaakka maittain ruokavalio ja hygienia.svg}}.
<rcode graphics=1>
# This is code Op_fi5889& on page Ruori
library(OpasnetUtils)
library(plotly)
library(thlGraphs)
# permalink to IHME data: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2017-permalink/7c1842c34d51287572a49c78b74c4801
Ruori on VN-TEAS-hanke, jossa arvioidaan erilaisia ruokaan liittyviä riskitekijöitä, niiden vähentämispotentiaalia ja niiden terveys- ja talousvaikutuksia. Hankkeen loppuraportti on julkaistu 2019.
Millaista tautitaakkaa Suomessa aiheuttavat Ruori-altisteet (tyydyttynyt rasva, vähäiset vihannekset, vähäiset hedelmät, liiallnen suola, dioksiinit, lyijy, aflatoksiini, toksoplasma, norovirus, trikinella ja legionella) ja miten erilaiset vähentämistoimet vaikuttavat?
Aikataulu ja käyttäjät
Hanke alkoi 2018 ja loppui 30.6.2019.
Toteuttajina ovat Ruokavirasto, THL ja Helsingin yliopisto.
Seuraavat skenaariot ovat tarkastelussa:
Listeria: mikrobinäytteitä otetaan elintarvikkeiden lisäksi tuotantoympäristöstä.
Norovirus: pintapuhtausnäytteitä otetaan suuratalouskeittiöistä ja sellaisenaan syötäviä ruokia valmistavista laitoksista.
Toksoplasma: kaikki raskaana olevat tutkitaan toksoplasman varalta.
Trikinella: trikinella tutkitaan ainoastaan vientiin menevistä sianruhoista.
Vierasesineet: tarkastelusta luovuttiin
Aflatoksiini: tuontipähkinöiden valvontanäytteitä lisätään 10 %.
Dioksiinit: Itämeren kala vaihdetaan järvikalaan.
Lyijy: laihdutusvalmiteisiin ja teejauheisiin aloitetaan tehovalvonta.
Suola: henkilöstöravintoloissa tarjolla ainoastaan sydänmerkkiaterioita.
Tyydyttynyt rasva: henkilöstöravintoloissa tarjolla ainoastaan sydänmerkkiaterioita.
Vastaus
Ravitsemustekijät osoittautuivat huomattavasti tärkeämmiksi tautitaakkaa aiheuttaviksi tekijöiksi kuin ruoassa olevat ympäristömyrkyt. Myös ravitsemukseen vaikuttamalla pystyttiin vaikuttamaan kansanterveyteen enemmän, joskin myös mikrobiriskien vähentämiseen löytyi tehokkaita keinoja. Päätulokset on esitetty kuvissa. Tarkemmat tulokset löytyvät tästä malliajosta.
Pohdinta
Kuvassa esitetään maakohtainen kokonaistautitaakka toisaalta tunnettujen ruokavalioon liittyvien riskitekijöiden (poislukien aliravitsemus) ja toisaalta hygieniaan liittyvien riskitekijöiden suhteen. Hygienia sisältää käsienpesun, puhtaan juomaveden ja sanitaation eli siinä ei ole mukana nimenomaan ruokavälitteisiä mikrobeja, mutta se antaa kuitenkin kohtalaisen kuvan mikrobivälitteisistä taudeista maavertailua varten.
On syytä huomata, että asteikot ovat logaritmisia ja ruokavalioriskien suhteen maiden välillä on yli kymmenkertaisia eroja mutta toisaalta hygienian osalta erot voivat olla yli tuhatkertaisia. Suomi on ravitsemuksen suhteen länsieurooppalaista keskikastia mutta hygieniassa maailman parhaiden joukossa. Luvuista saa vertailukelpoisia tämän raportin lukuihin suhteuttamalla niitä Suomen väkilukuun eli kertomalla noin viidelläkymmenellä.
Globaalissa vertailussa voi sanoa, että ravitsemuksen suhteen on selvästi parannettavaa. Jopa tautitaakan puolittaminen vie vasta tasolle, jolla lukuisat maat tällä hetkellä todellisuudessa ovat eli joka on periaatteessa aivan saavutettavissa. Kulttuurin muuttaminen on toki aina vaikeaa, myös ruokakulttuurin.
Sen sijaan hygieniassa ei juuri kukaan ole päässyt parempaan tilanteeseen, joten sillä puolella huomio on syytä kiinnittää tekijöihin, jotka saattavat rapauttaa hyvää nykytilannetta. Esimerkiksi salmonellan osalta Suomen tilanne jopa lähinaapureihin verrattuna on erittäin hyvä, eikä tästä ole syytä luopua. Tosin vaikka romahtaisimme hygieniassa EU:n keskitasolle, absoluuttinen tautitaakan lisäys olisi Suomessa vain suuruusluokkaa 500 DALYa vuodessa. Vastaavan suuruinen parannus olisi helposti saavutettavissa ravitsemuksen puolella.
Ruori-hankkeessa osoittautui yllättävän vaikeaksi löytää tietoa elintarvikevalvonnan vaikutuksesta hygieniaan. Tärkeää olisi pystyä arvioimaan valvonnassa tehtävän muutoksen vaikutusta tautitaakan muutokseen. Hygienian osalta kiinnostus on nimenomaan niin päin, että voidaanko valvontaa keventää ilman kostautumista tautien lisääntymisenä. Tätä tietoa ei järjestelmällisesti synny, koska valvonta on yleensä pakollista ja siksi vaihtoehdosta ei kerry kokemusta.
Tilannetta voisi parantaa kahdella eri tavalla. Ensinnäkin systemaattisesti pitäisi kuvata, mitä tehtiin tilanteessa, jossa havaittiin laatupoikkeama. Tieto pois vedetyistä eristä tai muista toimista auttaa arvioimaan, kuinka suuri haitta onnistuttiin välttämään eli mikä oli valvonnan lisäarvo. Trikinella on tästä mielenkiintoinen ääriesimerkki: koska positiivisia näytteitä ei tule, valvonta ei vaikuta toimintaan vaikka periaatteessa eriä vedettäisiin kontaminaatiotapauksessa pois. Valvonnan arvo kontaminaation vähentämisessä on siis nolla, ja hyöty tulee ainoastaan hyvän maineen säilyttämisen kautta. Muiden mikrobien osalta tällaista tietoa ei Ruorin käytössä ollut, vaikka tietoa elintarviketeollisuudella itsellään olisikin. Tässä ehkä tarvittaisiin yhteistyötä tiedon saamiseksi yhteiskunnan käyttöön.
Toinen tapa on tehdä kokeluja toisaalta tuotantoprosessissa (kalarehuvalmisteiden puhdistamista dioksiineista kokeiltiin aikanaan menestyksekkäästi, joten se on Suomessa nykyään tavallista eikä pitoisuuksien valvonta ei ole kovin tarpeellista) ja toisaalta tehokkaimman valvontapisteen tunnistamisessa (HACCP eli hazard analysis and critical control point on edelleen hyvä käytäntö).
Ruokavalion osalta tilanne on erilainen. Ei ole pelkoa, että jokin ruoka yllättäen sisältäisi enemmän suolaa tai vähemmän hedelmää kuin toisen erän valmiste; terveyteen vaikuttavat tekijät ovat siis hyvin ennakoitavissa ja vakioitu. Haasteet ovat yksilöiden käyttäytymisen ohjailussa niin, että hänen kokonaisruokavalionsa olisi terveellinen. Yksittäisen tuotteen suosiminen tai rajoittaminen ei riitä. Vaikuttamisen keinot kuten verotus myös ovat karkeita eli eivät kohdistu tehokkaasti oikeisiin yksilöihin tai asioihin.
Tässäkin kokeilut voisivat tuottaa uudenlaista lisäarvoa. Kansalaispalkkakokeilu toi suppeudestaan huolimatta arvokasta tietoa siitä, mihin kansalaispalkka vaikuttaa ja mihin ei. Samalla tavalla terveellisen ruoan verokohtelua, sokeriveroa tai sydänmerkkiaterioita ja niiden tehoa ja toimivuutta pitäisi yrittää kokeilujen avulla mitata ja onnistuneita keinoja ottaa laajaan käyttöön. Elintarvike- ja kaupan ala toki tekee jatkuvasti omia kokeilujaan ja lienee varsin hyvin perillä siitä, miten joidenkin tuotteiden myyntiä voidaan lisätä sopivalla sijoittelulla, hinnoittelulla ja pakkauksilla. Tässä tavoitteet vain ovat kansanterveyden kannalta osittain ristiriitaiset. On myös vaikea keksiä, miten nämä liikesalaisuudet voitaisiin saada yhteiskunnan käyttöön terveyden edistämiseksi.
Kun tarkastellaan eri maiden tilannetta ja ruoan ravitsemuksellisia ja hygieenisiä riskejä kokonaisuutena, voidaan tehdä kokoava päätelmä. Valvonta on hyödyllisimmillään eli tieto arvokkaimmillaan silloin, kun toiminnan, raaka-aineiden tai tuotteiden laatu vaihtelee paljon. Silloin valvonnan avulla voidaan tehokkaasti ohjata toimintaa turvallisemmaksi esimerkiksi hylkäämällä saastuneita eriä. Huonon hygienian oloissa tiedetään käsien pesun välttämättömyys ilman mittauksiakin, ja huippuunsa viritetyssä elintarvikeketjussa syntyy kovin vähän hylättävää. Ravitsemuspuolella laadun vaihtelu ei ole elintarvikkeissa vaan ihmisten tavassa käyttää epäterveellisiä tuotteita. Myös ravitsemusriskien kokemisessa ja tietämyksessä lienee erittäin suuria yksilöllisiä eroja. Näiden tutkiminen ja ymmärtäminen auttaisi suunnittelemaan sellaisia kansanterveyttä parantavia toimia, joilla ei kuitenkaan rajoitettaisi liikaa ihmisten mahdollisuuksia syödä myös herkkuja.
Perustelut
Data
Mitä kaikkea kuuluu vähäiseen hedelmien tai vihannesten syöntiin?
Vähähedelmäinen ruokavalio: hedelmien kulutus alle 3 annosta päivässä (310 g yhteensä) (sisältää tuoreet, pakastetut, keitetyt, säilötyt ja kuivatut hedelmät mutta ei sisällä hedelmämehuja tai suolaan tai etikkaan säilöttyjä hedelmiä) http://www.healthdata.org/terms-defined. Diet low in fruits: Consumption of less than 3 servings (310 g total) of fruits per day (includes fresh, frozen, cooked, canned, or dried fruit but excludes fruit juices and salted or pickled fruits).
Vähävihanneksinen ruokavalio: vihannesten kulutus alle 4 annosta (400 g yhteensä) (sisältää tuoreet, pakastetut, keitetyt, säilötyt ja kuivatut vihannekset mukaan lukien palkokasvit mutta ei sisällä suolaan tai etikkaan säilöttyjä vihanneksia eikä pähkinöitä, siemeniä tai tärkkelyspitoisia vihanneksia kuten perunaa tai maissia). Diet low in vegetables: Consumption of less than 4 servings (400 g total) of vegetables per day (includes fresh, frozen, cooked, canned, or dried vegetables including legumes but excluding salted or pickled, juices, nuts and seeds, and starchy vegetables such as potatoes or corn).
Luken tilastoista löytyy tietoja kalansyönnistä Suomessa. Järvikalaa ei ole eritelty, mutta muut kuin viljellyt ja merilajit ovat yhteensä 2.6 kg/a henkeä kohti. [3]. Kalansyöntidatat löytyvät myös Opasnetistä op_en:Goherr: Fish consumption study.
Voiko DALYt muuntaa euroiksi, ja miten se tehdään?
Drake ehdottaa globaalin arvon päättämistä DALYn hinnaksi, samaan tapaan kuin 1,25 dollarin alittava päivätulo on määritelty absoluuttiseksi köyhyydeksi. Tällöin kaikki tuota hintaa kustannustehokkaammat toimet kannattaisi tehdä joko kansallisin, tai jos se ei jostain syystä onnistu, kansainvälisin toimin. Hän ei kuitenkaan ehdota suuruutta tälle hinnalle.[1]
Brent on analysoinut implisiittisiä hintoja DALYlle Global Fund for AIDS, Tuberculosis, and Malaria -säätiön rahoituspäätöksistä. DALYn hinta näyttää olevan 6300 USD kaikille taudeille keskimäärin, ja 11900 USD erityisesti HIV/AIDSille[2]. Globaalit luvut ovat toki pienemmät kuin mitä rikkaissa länsimaissa katsottaisiin aiheelliseksi käyttää.
Erilaisista arvioinneista löytyy vaihtelevia lukuja yhden DALYn rahalliselle hinnalle. Esimerkiksi IOMin Shecan-projekti käytti arvoa 50393 €/menetetty elinvuosi[3], ja IGCB(N)-meluarviointiryhmä käyttää arvoa 60000 GBP/QALY (laatupainotettu elinvuosi) mutta samalla toteaa, että eri arvioinneissa arvot voivat vaihdella välillä 29000 - 130000 GBP/QALY[4][5].
Berryn ja Flindellin mukaan Isossa-Britanniassa käytäntö on muodostunut sellaiseksi, että lääkkeet tai muut lääketieteelliset toimenpiteet saavat kansallisessa terveysjärjestelmässä helposti puollon, jos ne tuottavat yhden terveen elinvuoden alle 20000 GBP:n kustannuksilla. Tyypillisesti toteutetaan hankkeita tasolla 30000 GBP/QALY, mutta hankkeilta hinnaltaan yli 50000 GBP/QALY vaaditaan erityisiä perusteluja[6].
Toisaalta Hammitt todistelee, että hinta per tilastollinen elämä (value per statistical life, VSL) ja hinta per DALY muuttuvat epälineaarisesti suhteessa toisiinsa, eikä näin ollen olisi mahdollista käyttää hyvinvointimuutoksen mittarina vakiolla kerrottua DALY-arvoa, ainakaan taloudellisen hyvinvointiteorian (economic welfare theory) puitteissa.[7]
Pitoisuusanalyysien kustannukset on poistettu tästä.
Trikiinin valvontakustannukset: Tämän artikkelin mukaan trikiinin DALYt ovat vain luokkaa 100 DALY/miljardi ihmistä, joten valvonta ei ole mielekästä[8].
Skenaarioista
Tyydyttyneen rasvan ja suolan osalta tarkastellaan sydänmerkkiaterioita. Oletetaan, että kaikki lounasruokaloiden ateriat muuttuvat sydänmerkkiaterioiksi. Väestön suuruudeksi oletetaan nykyinen lounaspaikkaruokailijoiden päivittäinen määrä eli 279000, ja heille oletetaan pysyvä muutos ruokavalioon.
Kun ei murehdita altistusjakaumasta, voidaan keskimääräisestä saannista vähentää vähennys, ja tämä muutos kohdennetaan vain 25-69-vuotiaaseen alaryhmään (jos alaryhmä on kyseiselle vasteelle määritelty). Skenaariossa kerrotaan PAF luvulla, joka saa arvon 1 nykyisellä altistuksella ja arvon 0 suosituksen mukaisella arvolla. Tätäitä laimennetaan altistujien osuudella. Niinpä käytetään tätä kaavaa kertoimen laskemiseksi:
PAF_factor = 1-(reduction / (intake-recommendation)) * eaters / population
Suola:
Sydänmerkki vähensi 2016 suolan saantia 1 g/d eli 4.2-5.2 g/vk eli 10 %. Tässä oletetaan 3.3-5.1 g/vk vähennys eli 0.471 - 0.729 g/d myös viikoloput huomioiden. Jula (2011) arvioi, että 1 g/d vähennys koko väestössä alentaa kustannuksia 70 Me/a. (Tarkista onko tautitaakkaa!)
Suositus on enintään 5 g/d. Nykysaanti (Valsta 2018) on miehillä 8.7 g/d ja naisilla 6.4 g/d ja tätä käytetään tasajakaumana koko väestölle, koska sukupuolia ei tarkastella erikseen.
Rasva:
Sydänmerkkiateria vähensi saantia 14 E%:sta 10 E%:iin. Tässä oletetaan, että vähennys on 22.0-58.1 g/vk.
Suositus on enintään 10 E%.
Valsta (2018): Tyydyttyneiden rasvahappojen osuus kokonaisenergiasta oli naisilla 14 % (28 g/vrk) ja miehillä 15 % (38 g/vrk). Naisilla muuntosuhde on 2 g /d /E% ja miehillä 2.53 g /d /E%, käytetään 2.25 g /d /E%. Grammamääräinen altistus on muutettava energiaosuudeksi.
Probs relative to consumption; Baltic herring has equal weight with others combined because it is another scenario. Arctic char, Baltic herring, Bream, Burbot, Cod, Flounder, Perch, Pike, Pike-perch, Rainbow trout, River lamprey, Roach, Salmon, Sea trout, Sprat, Trout, Vendace, Whitefish
# This is code Op_fi5889/prepare on page [[Ruori]]
library(OpasnetUtils)
library(ggplot2)
rm(list=ls())
rm(list=ls(envir = openv),envir=openv)
openv.setN(10000)
##############################
# Pb exposure in children
# Data feched from \\helfs01.thl.fi/documents/YMAL/Projects/TUORI/tautitaakka/lyijy/Lyijy_tautitaakkadata.xlsx
# Pb <- re#ad.csv("clipboard",sep="\t",dec=",")
# ggplot(Pb, aes(x=Pb, fill=as.character(Age)))+geom_density(alpha=0.5)
# Population data
if(FALSE) {
# Read population data 2018 from Statistics Finland
#vae <- re#ad.csv("https://pxnet2.stat.fi:443/PXWeb/sq/ac3373d0-e303-4c67-b32a-73c6d26df809", skip=2)
#vae$Ikä <- as.numeric(gsub(" -","",as.character(vae$Ikä)))
cat("Ages 1, 25-64, 65-74, 25-29, 70+, Total population, 0, 1+, Female 18-45, Non female 18-45\n")
c(
sum(vae$X2018[vae$Ikä==1]), # Age 1
sum(vae$X2018[vae$Ikä>=25 & vae$Ikä <65]), # Age 25-64
sum(vae$X2018[vae$Ikä>=65 & vae$Ikä <75]), # Age 65-74
sum(vae$X2018[vae$Ikä>=25 & vae$Ikä <70]), # Age 25-69
sum(vae$X2018[vae$Ikä>=70 & vae$Ikä <101]), # Age 70+
sum(vae$X2018), # Total population
sum(vae$X2018[vae$Ikä==0]), # Age 0
sum(vae$X2018[vae$Ikä>=1]), # Age 1+
sum(vae$X2018[vae$Ikä>=18 & vae$Ikä <46 & vae$Sukupuoli=="Naiset"]), #Female 18-45
sum(vae$X2018[!(vae$Ikä>=18 & vae$Ikä <46 & vae$Sukupuoli=="Naiset")]) #Non female 18-45
)
}
##########################3
dat <- opbase.data("Op_fi5889", subset="Malliparametrit")[-1]
dec <- opbase.data("Op_fi5889", subset="Decisions")[-1]
DecisionTableParser(dec)
CTable <- opbase.data("Op_fi5889",subset="CollapseMarginals")
for(i in 1:ncol(CTable)) {CTable[[i]] <- as.character(CTable[[i]])}
CollapseTableParser(CTable)
cat("Laskennassa käytetty data.\n")
oprint(dat)
cat("Tarkastellut päätökset.\n")
oprint(dec)
cat("Aggregoidut marginaalit.\n")
oprint(CTable)
#' prepare adjusts the data table for ovariables. Requires function subgrouping from code Op_en2031/initiate on page [[Exposure-response function]]
#' @param dat data.frame
#' @param type type of data that is used. Must match content in column Type
#' @param drop columns to remove
#' @return data.frame
prepare <- function(dat, type=NULL, drop=NULL) {
out <- dat
if(!is.null(type)) out <- out[out$Type %in% type , ]
if(!is.null(drop)) out <- out[!colnames(out) %in% drop]
return(subgrouping(out))
}
objects.latest("Op_en2031", code_name="initiate") # [[Exposure-response function]] subgrouping
###### Concentration data
objects.latest("Op_en3104", code_name="preprocess") # [[EU-kalat]]") eu2
# Get a lognormal concentration distribution for each fish species using same sd and individual means
conc <- Ovariable(
"conc",
dependencies=data.frame(Name=c("eu2")),
formula = function(...) {
out <- (oapply(eu2[eu2$Compound %in% c("PCDDF", "PCB") , ], NULL, sum, "Compound"))
out <- oapply(log(out), c("Fish","eu2Source"), mean)
result(out) <- paste(result(out), oapply(out, c("eu2Source"), sd)$eu2Result, sep="+-")
out <- out@output[colnames(out@output)!="eu2Source"]
colnames(out)[colnames(out)=="eu2Result"] <- "Result"
out$Exposure_agent <- "TEQ"
out <- exp(EvalOutput(Ovariable("conc",data=out)))
out$Scenario <- ifelse(out$Fish=="Baltic herring", "BAU","Action")
return(out)
}
)
######## Fish intake data
objects.latest("Op_en7749", code_name = "initiate") # [[Goherr: Fish consumption study]]
## Variables assump, often, much, oftenside, muchside, amountRaw, effinfo, effrecomm, amount
effinfo <- 0 # We are not interested in changes in amount
effrecomm <- 0
amountOrigFormula <- amount@formula
amount@formula <- function(...) {
out <- amountOrigFormula(...)
out <- oapply(out[out$Fish=="Herring",], NULL, sum, "Fish")
out <- out * info
return(out)
}
# Stores non-marginal columns for further use.
info <- Ovariable(
"info",
dependencies = data.frame(Name = c("jsp")),
formula = function(...) {
out <- unique(jsp@output[c("Iter","Country","Gender","Ages","Row")])
out <- out[out$Country=="FI",]
out$Group <- paste(out$Gender, out$Ages)
out$Group <- ifelse(out$Group=="Female 18-45", out$Group, "Non female 18-45")
out$Result <- 1
return(out)
}
)
expo_bg <- 0
expo_dir <- Ovariable(
"expo_dir",
dependencies=data.frame(Name=c("amount","conc","expo_bg")),
formula = function(...) {
out <- amount * conc
out <- Ovariable(data = data.frame(
Exposcen = c("BAU", "No exposure"),
Result = c(1, 0)
)) * out + expo_bg
out$Exposure <- as.factor(
ifelse(
out$Exposure_agent %in% c("DHA", "MeHg"),
"To child",
"To eater"
)
)
out@marginal[colnames(out@output)=="Exposcen"]<- TRUE
return(out)
}
)
### mc2d makes a 2D Monte Carlo with assumed 50 individuals in data. Exposure is their average.
exposure <- Ovariable(
"exposure",
dependencies = data.frame(
Name = c(
"expo_dir", # direct exposure, i.e. the person eats or breaths the exposure agent themself
"expo_indir", # indirect exposure, i.e. the person (typically fetus or infant) is exposed via someone else (mother)
"mc2d" # 2D Monte Carlo function
),
Ident = c(
NA,
"Op_en7797/expo_indir", # [[Infant's dioxin exposure]] # expo_indir
"Op_en7805/mc2d") # [[Two-dimensional Monte Carlo]]
),
formula = function(...) {
out <- combine(expo_dir, expo_indir)
out <- unkeep(out, "Source.1", sources=TRUE)
out <- mc2d(out)
return(out)
}
)
exposure@meta <- c(
exposure@meta,
list(units = "To eater: pg /day; to child: pg /g fat")
)
mc2dparam<- list(
N2 = 1000, # Number of iterations in the new Iter
strength = 50, # Sample size to which the fun is to be applied. Resembles number of observations
run2d = TRUE, # Should the mc2d function be used or not?
info = info, # Ovariable that contains additional indices, e.g. newmarginals.
newmarginals = c("Group","Exposure"), # Names of columns that are non-marginals but should be sampled enough to become marginals
method = "bootstrap", # which method to use for 2D Monte Carlo? Currently bootsrap is the only option.
fun = mean # Function for aggregating the first Iter dimension.
)
exposure <- EvalOutput(exposure,verbose=TRUE)
oprint(summary(exposure[exposure$Exposcen=="BAU",], marginals=c("Exposure_agent","Scenario","Group","Exposure")))
oprint(summary(conc))
oprint(summary(amount*info,marginals="Group"))
ggplot(conc@output, aes(x=concResult, colour=Scenario))+stat_ecdf()+scale_x_log10()
ggplot((info*amount)@output, aes(x=amountResult+0.01, colour=Group))+stat_ecdf()+scale_x_log10()
ggplot(info*expo_indir@output, aes(x=expo_indirResult+0.01, colour=Group))+stat_ecdf()+scale_x_log10()+facet_grid(Group~Exposure)
ggplot(exposure@output[exposure$Exposcen=="BAU",], aes(x=exposureResult, colour=Scenario))+geom_density()+facet_grid(Group~Exposure)
tmp <- summary(exposure[exposure$Exposcen=="BAU",], marginals=c("Scenario","Group","Exposure"))
tmp[4:10] <- as.data.frame(lapply(tmp[4:10], function(x) round(x, 2)))
tmp$out <- paste0(tmp$mean, " (",tmp$Q0.025, " - ", tmp$Q0.975, ")")
oprint(tmp)
tmp$out
##############################
# Domestic fish consumption. Used to give weights to fish species concentration data
tmp <- opbase.data("Op_en7749", subset="Fish consumption as food in Finland")
tmp <- tmp[tmp$Origin=="domestic fish" & !tmp$Species %in% c(
"Total", "Farmed rainbow trout","Baltic herring", "Other domestic fish") & tmp$Year==2017 ,
!colnames(tmp) %in% c("Obs","Origin", "Year")]
colnames(tmp)[colnames(tmp)=="Species"] <- "Fish"
levels(tmp$Fish)[
match(c("European whitefish", "Pike perch"), levels(tmp$Fish))] <- c("Whitefish","Pike-perch")
tmp$Result <- tmp$Result / sum(tmp$Result)
tmp <- merge(unique(eu2@output["Fish"]), tmp, all.x=TRUE)
tmp$Result[is.na(tmp$Result)] <- 0
tmp$Result[tmp$Fish=="Baltic herring"] <- 1 # Baltic herring is on BAU scenario and gets equal weight with others combined
cat("Copy these weights to CollapseMarginal table for conc Collapsing.\n")
round(tmp$Result,2)
###### This is temporary code that is used to calculate the option "Action" of decision "Scenario".
population <- Ovariable("population", data = prepare(dat,"population",c("Type","Exposure_agent","Response","Unit")))
reduction <- Ovariable("reduction", data = prepare(dat,"reduction",c("Type","Response")))
intake <- Ovariable("intake", data = prepare(dat,"intake",c("Type","Response")))
recommendation <- Ovariable("recommendation", data = prepare(dat,"recommendation",c("Type","Response")))
eaters <- Ovariable("eaters", data = prepare(dat,"eaters",c("Type","Response","Unit")))
PAF_factor <- Ovariable(
"PAF_factor",
dependencies=data.frame(Name=c("reduction","intake","recommendation","eaters","population")),
formula = function(...) {
out <- 1 - reduction / (intake - recommendation) * eaters / population
return(out)
}
)
PAF_factor <- EvalOutput(PAF_factor)
ggplot(PAF_factor@output, aes(x=PAF_factorResult, fill=Exposure_agent))+geom_density()+facet_wrap(~Exposure_agent)
summary(PAF_factor)
# The PAF_factor distributions for saturated fat and sodium are NOT normally distributed. Instead, triangular
# distribution seems to be a reasonable fit with parameters:
# Sodium: triangular 0.975 : 0.990 : 0.993
# Saturated fat: triangular 0.911 : 0.944 : 0.971
##### Q25 was used when 25 quantiles were estimated. Now we use rnorm estimate.
Q25 <- function(x) {
return(round(quantile(x, probs = seq(0.02, 0.98, 0.04)),1))
}
summary(exposure[exposure$Exposcen=="BAU",], marginals=c("Exposure","Group","Scenario"), "Q25")
################ Insight network
gr <- scrape(type="assessment")
objects.latest("Op_en3861", "makeGraph") # [[Insight network]]
gr <- makeGraph(gr)
#export_graph(gr, "ruori.svg")
render_graph(gr)
↑Drake T. (2014) Priority setting in global health: towards a minimum DALY value. Health Economics Letter 23:2:248-252. https://doi.org/10.1002/hec.2925
↑Hammitt, J.K. (2013) Admissible utility functions for health, longevity, and wealth: integrating monetary and life-year measures. J Risk Uncertain 47: 311. https://doi.org/10.1007/s11166-013-9178-4
↑Brecht Devleesschauwer, Nicolas Praet, Niko Speybroeck, Paul R. Torgerson, Juanita A. Haagsma, KrisDe Smet, K. Darwin Murrell, Edoardo Pozio, Pierre Dorny. (2015) The low global burden of trichinellosis: evidence and implications. International Journal for Parasitology 45, 2–3, 95-99. [1][2]
Bruce P. Lanphear, Richard Hornung, Jane Khoury, Kimberly Yolton, Peter Baghurst, David C. Bellinger, Richard L. Canfield, Kim N. Dietrich, Robert Bornschein, Tom Greene, Stephen J. Rothenberg, Herbert L. Needleman, Lourdes Schnaas, Gail Wasserman, Joseph Graziano, and Russell Roberts. (2005) Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis. Environmental Health Perspectives. 1 July 2005 https://doi.org/10.1289/ehp.7688
Johanna Suomi, Pirkko Tuominen, Jukka Ranta, Kirsti Savela. (2015) Riskinarviointi suomalaisten lasten altistumisesta elintarvikkeiden ja talousveden raskasmetalleille. Eviran tutkimuksia 2/2015. [7]
EFSA. Lead dietary exposure in the European population. EFSA Journal 2012;10(7):2831 doi