<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <ana user="Päivi" project="Pohjavesi_noro" generated="2. helta 2010 16:35 " softwareversion="4.1.0" software="Analytica"> <sysvar name="Samplesize"> <definition>10K</definition> </sysvar> <sysvar name="Usetable"> <definition>0</definition> </sysvar> <sysvar name="Run"> <att_previndexvalue>[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100]</att_previndexvalue> </sysvar> <sysvar name="Typechecking"> <definition>1</definition> </sysvar> <sysvar name="Checking"> <definition>1</definition> </sysvar> <sysvar name="Showhier"> <definition>1</definition> </sysvar> <sysvar name="Saveoptions"> <definition>2</definition> </sysvar> <sysvar name="Savevalues"> <definition>0</definition> </sysvar> <sysvar name="False"> <windstate>2,102,90,476,224</windstate> </sysvar> <sysvar name="Allwarnings"> <definition>0</definition> </sysvar> <sysvar name="Showdescriptionmarks"> <definition>1</definition> </sysvar> <sysvar name="Graph_primary_valdim"> <att_catlinestyle>9</att_catlinestyle> </sysvar> <sysvar name="Graph_stats_valdim"> <att_catlinestyle>9</att_catlinestyle> </sysvar> <sysvar name="Graph_pdf_valdim"> <att_contlinestyle>6</att_contlinestyle> </sysvar> <model name="Pohjavesi_noro"> <author>Päivi</author> <date>22. marta 2009 15:18</date> <saveauthor>Päivi</saveauthor> <savedate>2. helta 2010 16:35 </savedate> <defaultsize>48,24</defaultsize> <diagstate>1,0,-23,1280,675,17</diagstate> <diagramcolor>52427,60621,65535</diagramcolor> <fontstyle>Arial, 15</fontstyle> <fileinfo>0,Model Pohjavesi_noro,2,2,0,1,C:\Documents and Settings\Päivi\Desktop\Pohjavesi_noro.ana</fileinfo> <chance name="Op_fi1757"> <title>Consumption of unboiled water</title> <units>mL</units> <definition>Lognormal( , , 757.765 , 566.879 )</definition> <nodelocation>256,400,1</nodelocation> <nodesize>64,36</nodesize> <windstate>2,466,258,855,539</windstate> <nodecolor>19661,65535,65535</nodecolor> </chance> <index name="Contamination"> <title>Contamination</title> <definition>['Clean','Medium','Contaminated']</definition> <nodelocation>112,216,1</nodelocation> <nodesize>60,12</nodesize> <windstate>2,0,-23,1441,800</windstate> <att_previndexvalue>['Clean','Medium','Contaminated']</att_previndexvalue> </index> <module name="Dose__response"> <title>Dose- response</title> <author>pmea</author> <date>3. syyta 2008 15:02</date> <defaultsize>48,24</defaultsize> <nodelocation>256,512,1</nodelocation> <nodesize>48,24</nodesize> <diagstate>1,0,0,535,265,17</diagstate> <function name="Dose_response"> <parameters>(dose)</parameters> <title>Dose response</title> <definition>Table(Microbe)( Norovirus_2( dose),Rotavirus_( dose),Norovirus_2( dose))</definition> <nodelocation>80,56,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,0,-23,1280,675</windstate> <paramnames>dose</paramnames> </function> <function name="Norovirus_2"> <parameters>(dose)</parameters> <title>Norovirus_2</title> <description>Exact_beta_poisson_m( 0.040, 0.055, dose ) 1-(1+(Dose/0.422))^(-0.253)</description> <definition>Exact_beta_poisson_m( 0.040, 0.055, dose )</definition> <nodelocation>208,48,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,522,357,609,424</windstate> <paramnames>dose</paramnames> </function> <function name="Exact_beta_poisson_m"> <parameters>(alpha,beta,dose)</parameters> <title>Exact Beta Poisson model low dose approximation</title> <definition>1-exp(-(alpha/(alpha+beta))*dose)</definition> <nodelocation>320,80,1</nodelocation> <nodesize>48,58</nodesize> <windstate>2,606,76,476,224</windstate> <paramnames>alpha,beta,dose</paramnames> </function> <function name="Rotavirus_"> <parameters>(dose)</parameters> <title>Rotavirus_</title> <description>Teunis and Havelaar (2000) Risk Analysis 20:511-518 fitted the exact hypergeometric beta poisson model to the data from Ward et al. (1986) Journal of Infectious Diseases 154, 871-880 Exact_beta_poisson_m( 0.167, 0.191, dose ) </description> <definition>Exact_beta_poisson_m( 0.167, 0.191, dose )</definition> <nodelocation>208,112,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,585,441,613,302</windstate> <paramnames>dose</paramnames> </function> <function name="Beta_poisson_approxi"> <parameters>(alpha, beta, dose)</parameters> <title>Beta_poisson_approxi</title> <definition>1-(1+dose/beta)^-alpha</definition> <nodelocation>432,48,1</nodelocation> <nodesize>48,24</nodesize> <paramnames>alpha,beta,dose</paramnames> </function> <alias name="Propability_for_inf2"> <title>Propability for infection</title> <definition>0</definition> <nodelocation>88,176,1</nodelocation> <nodesize>48,24</nodesize> <nodecolor>19661,48336,65535</nodecolor> <original>Op_fi1759</original> </alias> <variable name="Poisson_params"> <title>Poisson params</title> <definition>Table(Microbe,Self)( 0.04,0.055, 0.167,0.191, 0.04,0.055 )</definition> <indexvals>['alpha','beta']</indexvals> <nodelocation>208,176,1</nodelocation> <nodesize>48,24</nodesize> <nodecolor>65535,52427,65534</nodecolor> <reformdef>[Self,Microbe]</reformdef> </variable> <function name="Dose_response1"> <parameters>(dose)</parameters> <title>Dose response</title> <description>HUOM! Kannattaa ehdottomasti välttää parametrien laittamista kaavoihin ja funktioihin. Aina jos mahdollista, niin tehdään vaaleanpunainen solmu syöteparametreille. Näin ne löytyvät ja ovat kritisoitavissa.</description> <definition>var alpha:= poisson_params[poisson_params='alpha']; var beta:= poisson_params[poisson_params='beta']; 1-exp(-(alpha/(alpha+beta))*dose)</definition> <nodelocation>80,112,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,536,216,603,350</windstate> <paramnames>dose</paramnames> </function> </module> <variable name="Fe_filtration"> <title>Fe filtration</title> <description>Käytetään arviota 1 log removal</description> <definition>1</definition> <nodelocation>408,136,1</nodelocation> <nodesize>56,22</nodesize> <windstate>2,0,-23,1280,675</windstate> <valuestate>2,852,328,416,303,0,MIDM</valuestate> <reformval>[]</reformval> <att__discretenessinf>[1,1,0,1]</att__discretenessinf> </variable> <text name="Generic_qmra_model_"> <title>Generic QMRA Model </title> <description>Juomaveden mikrobiologinen riskinarviointi</description> <nodelocation>296,64,-1</nodelocation> <nodesize>276,36</nodesize> <nodeinfo>1,0,0,1,0,0,1,,0,</nodeinfo> <windstate>2,0,-23,1281,914</windstate> <nodefont>Arial Black, 24</nodefont> </text> <chance name="Likelyhood_of_contam"> <title>Likelyhood of contamination</title> <definition>Table(Contamination)( 1,1,1)</definition> <nodelocation>256,320,1</nodelocation> <nodesize>60,40</nodesize> <windstate>2,0,-23,800,489</windstate> <defnstate>2,340,102,416,303,0,MIDM</defnstate> </chance> <index name="Microbe"> <title>Microbe</title> <definition>['Norovirus','Rotavirus','Murine norovirus']</definition> <nodelocation>112,192,1</nodelocation> <nodesize>48,13</nodesize> <windstate>2,0,-23,1281,676</windstate> <att_previndexvalue>['Norovirus','Rotavirus','Murine norovirus']</att_previndexvalue> </index> <chance name="Op_fi1755"> <title>Pathogens in source water</title> <units>unit/l</units> <definition>Table(Microbe,Contamination)( triangular(0,0,0),triangular(12.5,100,500),triangular(500,1000,5000), triangular(0,0,0),triangular(12.5,100,500),triangular(500,1000,5000), triangular(0,0,0),triangular(12.5,100,500),triangular(500,1000,5000) )</definition> <nodelocation>112,152,1</nodelocation> <nodesize>48,31</nodesize> <windstate>2,0,-23,1280,675</windstate> <defnstate>2,705,119,416,303,0,MIDM</defnstate> <valuestate>2,534,69,446,243,0,MIDM</valuestate> <nodecolor>65535,52427,57888</nodecolor> <reformdef>[Microbe,Contamination]</reformdef> <reformval>[Contamination,Microbe,1]</reformval> <att__discretenessinf>[0,0,0,0]</att__discretenessinf> <att_resultslicestate>[Contamination,3,Microbe,1,Sys_localindex('STEP'),1]</att_resultslicestate> </chance> <objective name="Op_fi1753"> <title>Pathogen conentration in drinking water</title> <definition>10^(Logten(Op_fi1755*Likelyhood_of_contam)-Op_fi1758) </definition> <nodelocation>112,320,1</nodelocation> <nodesize>48,40</nodesize> <windstate>2,0,-23,1280,675</windstate> <valuestate>2,0,-23,1280,675,0,MEAN</valuestate> <reformval>[Contamination,Treatment]</reformval> <att_resultslicestate>[Microbe,3,Treatment,1,Contamination,1]</att_resultslicestate> </objective> <variable name="Op_fi1756"> <title>Pathogen exposure</title> <definition>Op_fi1757*Op_fi1753/1000</definition> <nodelocation>112,400,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,0,-23,1280,675</windstate> <valuestate>2,0,0,1281,676,0,MIDM</valuestate> <reformval>[Contamination,Treatment]</reformval> <att_resultslicestate>[Microbe,3,Treatment,1,Contamination,1]</att_resultslicestate> </variable> <variable name="Op_fi1759"> <title>Probability of infection</title> <definition>Dose_response1(Op_fi1756)</definition> <nodelocation>112,512,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,0,-23,1280,675</windstate> <valuestate>2,560,90,561,278,0,MEAN</valuestate> <aliases>[Alias Propability_for_inf2, Formnode Pinf___annual1]</aliases> <nodecolor>19661,48336,65535</nodecolor> <graphsetup>{!40000|Att_graphvaluerange Clipboard_pinf:1,,,,1} {!40000|Att_catlinestyle Graph_primary_valdim:9}</graphsetup> <reformval>[Contamination,Treatment,2,0]</reformval> <numberformat>2,D,4,2,0,0,4,0,$,0,"ABBREV",0</numberformat> <att__tableprintscali>100,1,1,1,1,9,2970,2100,15,0</att__tableprintscali> <att__discretenessinf>[1,0,0,0]</att__discretenessinf> <att_resultslicestate>[Microbe,3,Treatment,1,Contamination,1]</att_resultslicestate> </variable> <objective name="Op_fi1760"> <title># infections in the area</title> <description>Tämä laskee seuraavaa: mikä on todennäköisten tautitapausten määrä, kun väestö juo tätä vettä yhden vuorokauden ajan?</description> <definition>poisson(Op_fi1759*Population_size)</definition> <nodelocation>184,584,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,441,298,727,250</windstate> <valuestate>2,0,-23,1280,675,0,MEAN</valuestate> <nodecolor>19661,48336,65535</nodecolor> <graphsetup>{!40000|Att_graphindexrange .Possible_values:1,0} {!40000|Att_contlinestyle Graph_cumprob_valdim:1} {!40000|Att_catlinestyle Graph_cumprob_valdim:1}</graphsetup> <reformval>[Contamination,Treatment]</reformval> <numberformat>2,D,4,2,0,0,4,0,$,0,"ABBREV",0</numberformat> <att__tableprintscali>100,1,1,1,1,9,2970,2100,15,0</att__tableprintscali> <att__discretenessinf>[1,1,0,1]</att__discretenessinf> <att_resultslicestate>[Microbe,3,Treatment,4,Contamination,3]</att_resultslicestate> </objective> <objective name="Op_fi1761"> <title># people having infection within a year</title> <description>Tarkkaan ottaen tämä laskee seuraavaa: Mikä on odotusarvo sille lukumäärälle ihmisiä, jotka saavat ripulin juomavedestä ainakin kerran yhden vuoden aikana? Tässä siis pidetään merkityksettömänä sitä, jos ripulin saisi uudestaan.</description> <definition>(1-(1-Op_fi1759)^365)*15000</definition> <nodelocation>80,608,1</nodelocation> <nodesize>48,49</nodesize> <windstate>2,102,90,476,224</windstate> <valuestate>2,483,175,488,240,0,MEAN</valuestate> <aliases>[Formnode Pinf_annual1]</aliases> <reformval>[Contamination,Treatment,2]</reformval> <att__tableprintscali>100,1,1,1,1,0,0,0,0,0</att__tableprintscali> <att__discretenessinf>[1,0,0,0]</att__discretenessinf> <att_resultslicestate>[Microbe,3,Treatment,1,Contamination,1]</att_resultslicestate> </objective> <formnode name="Pinf_annual1"> <title>Pinf annual</title> <definition>1</definition> <nodelocation>816,656,1</nodelocation> <nodesize>224,20</nodesize> <nodeinfo>1,0,0,1,0,0,1,162,0,1</nodeinfo> <nodecolor>52425,39321,65535</nodecolor> <nodefont>Arial, 11</nodefont> <original>Op_fi1761</original> </formnode> <formnode name="Pinf___annual1"> <title>Pinf - annual</title> <definition>1</definition> <nodelocation>816,560,1</nodelocation> <nodesize>224,20</nodesize> <nodeinfo>1,0,0,1,0,0,1,186,0,1</nodeinfo> <nodecolor>52425,39321,65535</nodecolor> <nodefont>Arial, 10</nodefont> <original>Op_fi1759</original> </formnode> <text name="Te1"> <title>Te1</title> <description>Tulokset: Infektion todennäköisyys alueella per henkilö Vuosittainen infektioiden lukumäärä alueella</description> <nodelocation>832,576,-1</nodelocation> <nodesize>236,108</nodesize> <nodeinfo>1,0,0,1,0,1,1,,0,</nodeinfo> <windstate>2,0,-23,1281,676</windstate> <nodefont>Arial, 19</nodefont> </text> <text name="Te2"> <title>Te1</title> <description>Mikrobit: -Norovirus -Rotavirus -Murine norovirus Kontaminaatioskenaariot: -Clean: Puhdas tilanne, ei norovirusta raakavedessä -Medium: Nykytilanne, norovirusta havaittu raakavedessä -Contaminated: Vakava norovirus-kontaminaatio raakavedessä Vedenkäsittelyskenaariot: -UV ja raudanpoisto -UV max 100 % teho -UV normal 80 % teho -UV min 45% teho (lamppujen vaihtoraja) -Kaksi vierekkäistä UV-linjaa</description> <nodelocation>832,232,-1</nodelocation> <nodesize>236,218</nodesize> <nodeinfo>1,0,0,1,0,1,1,,0,</nodeinfo> <windstate>2,102,90,476,224</windstate> <nodefont>Arial, 19</nodefont> </text> <variable name="Op_fi1758"> <title>Total microbial log reduction</title> <definition>Table(Treatment)( Fe_filtration+Op_fi1754,Fe_filtration+Op_fi1754*0.8,Fe_filtration+Op_fi1754*0.45,Op_fi1754,Op_fi1754*0.8,Op_fi1754*0.45,Op_fi1754*2)</definition> <nodelocation>288,160,1</nodelocation> <nodesize>48,40</nodesize> <windstate>2,0,0,1280,675</windstate> <defnstate>2,232,242,416,303,0,MIDM</defnstate> <valuestate>2,0,0,1281,676,0,MIDM</valuestate> <reformval>[Microbe,Treatment]</reformval> </variable> <variable name="Op_fi1754"> <title>UV</title> <description>-Norovirus_uv_lr(Fluence)</description> <definition>Table(Microbe)( -Norovirus_uv_lr(Fluence),-Rotavirus_uv_lr(Fluence),-Murine_norovirus_lr(Fluence))</definition> <nodelocation>400,192,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,575,118,494,296</windstate> <valuestate>2,0,-23,1440,799,0,MIDM</valuestate> <reformdef>[Microbe,Treatment]</reformdef> </variable> <index name="Treatment"> <title>Treatment</title> <definition>['UV max + Fe filtration','UV normal + Fe filtration','UV minimum + Fe filtration','UV max','UV normal','UV minimum','Double UV']</definition> <nodelocation>288,216,1</nodelocation> <nodesize>48,12</nodesize> <windstate>2,0,-23,1441,800</windstate> <att_previndexvalue>['UV max + Fe filtration','UV normal + Fe filtration','UV minimum + Fe filtration','UV max','UV normal','UV minimum','Double UV']</att_previndexvalue> </index> <module name="Uv_treatment"> <title>UV treatment</title> <author>Päivi</author> <date>22. marta 2009 15:41</date> <defaultsize>48,24</defaultsize> <nodelocation>512,192,1</nodelocation> <nodesize>48,24</nodesize> <diagstate>1,0,-23,1280,675,17</diagstate> <chance name="Fluence"> <title>Fluence Dose mJ. cm 2</title> <description>79.2</description> <definition>79.2</definition> <nodelocation>96,80,1</nodelocation> <nodesize>48,31</nodesize> <windstate>2,758,147,336,271</windstate> <valuestate>2,0,-23,1440,799,0,MIDM</valuestate> <nodecolor>39321,55707,65535</nodecolor> </chance> <function name="Norovirus_uv_lr"> <parameters>(fluence)</parameters> <title>Norovirus UV LR</title> <definition>Uvlogred( 0.106, fluence, 0 )</definition> <nodelocation>232,104,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,773,108,410,303</windstate> <paramnames>fluence</paramnames> </function> <function name="Rotavirus_uv_lr"> <parameters>(fluence)</parameters> <title>Rotavirus_uv_lr</title> <definition>Uvlogred( 0.102, fluence, 0 )</definition> <nodelocation>232,40,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,659,283,419,338</windstate> <paramnames>fluence</paramnames> </function> <function name="Uvlogred"> <parameters>(k,fluence,b)</parameters> <title>UVLogRed</title> <definition>-k*fluence-b</definition> <nodelocation>224,248,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,558,321,409,277</windstate> <paramnames>k,fluence,b</paramnames> </function> <function name="Murine_norovirus_lr"> <parameters>(fluence)</parameters> <title>Murine norovirus LR</title> <definition>Uvlogred( 0.132, fluence, 0 )</definition> <nodelocation>232,176,1</nodelocation> <nodesize>48,31</nodesize> <windstate>2,676,509,528,283</windstate> <paramnames>fluence</paramnames> </function> </module> <variable name="Population_size"> <title>Population size</title> <definition>15000</definition> <nodelocation>296,600,1</nodelocation> <nodesize>48,24</nodesize> </variable> <objective name="A__infections_in_th2"> <title># infections in the area/a</title> <description>Tämä laskee seuraavaa: mikä on todennäköisten tautitapausten määrä, kun väestö juo tätä vettä yhden vuoden ajan? Suurimmat lukemat erittäin kontaminoituneella vedellä ovat tietenkin järjettömiä, koska jos tuollainen epidemia syntyisi, niin * sitä ei vuotta katseltaisi, * mallissa oletetaan, että ripulin voi saada joka päivä uudestaan riippumatta edellisestä päivästä.</description> <definition>poisson(Op_fi1759*Population_size*365)</definition> <nodelocation>184,640,1</nodelocation> <nodesize>48,24</nodesize> <windstate>2,426,345,727,250</windstate> <valuestate>2,177,48,651,493,0,MEAN</valuestate> <nodecolor>19661,48336,65535</nodecolor> <graphsetup>{!40000|Att_graphindexrange .Possible_values:1,0,0,,,,,0,5000} {!40000|Att_contlinestyle Graph_cumprob_valdim:1} {!40000|Att_catlinestyle Graph_cumprob_valdim:1}</graphsetup> <reformval>[Contamination,Treatment]</reformval> <numberformat>2,D,4,2,0,0,4,0,$,0,"ABBREV",0</numberformat> <att__tableprintscali>100,1,1,1,1,9,2970,2100,15,0</att__tableprintscali> <att__discretenessinf>[1,1,0,1]</att__discretenessinf> <att_resultslicestate>[Microbe,1,Contamination,3,Treatment,4,Sys_localindex('POSSIBLE_VALUES'),1]</att_resultslicestate> </objective> <text name="Te3"> <description>Raakavesi</description> <nodelocation>120,176,-1</nodelocation> <nodesize>92,76</nodesize> <nodeinfo>1,0,0,1,0,1,0,,0,</nodeinfo> <nodecolor>39321,52431,65535</nodecolor> </text> <text name="Te4"> <title>Te3</title> <description>Vedenpuhdistus</description> <nodelocation>400,176,-1</nodelocation> <nodesize>172,76</nodesize> <nodeinfo>1,0,0,1,0,1,0,,0,</nodeinfo> <nodecolor>39321,52431,65535</nodecolor> </text> <text name="Te5"> <title>Te3</title> <description>Altistuminen</description> <nodelocation>184,352,-1</nodelocation> <nodesize>156,92</nodesize> <nodeinfo>1,0,0,1,0,1,0,,0,</nodeinfo> <nodecolor>39321,52431,65535</nodecolor> </text> <text name="Te6"> <title>Te3</title> <description>Terveysvaikutukset</description> <nodelocation>184,568,-1</nodelocation> <nodesize>160,112</nodesize> <nodeinfo>1,0,0,1,0,1,0,,0,</nodeinfo> <nodecolor>39321,52431,65535</nodecolor> </text> </model> </ana>